|
A. Electric Vehicles [1] S. G. Wirasingha and A. Emadi, “Classification and review of control strategies for plug-in hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 111-122, 2011. [2] K. Rajashekara, “Present status and future trends in electric vehicle propulsion technologies,” IEEE Trans. Power Electron., vol. 1, no. 1, pp. 3-10, 2013. [3] B. Frieske, M. Kloetzke, and F. Mauser, “Trends in vehicle concept and key technology development for hybrid and battery electric vehicles,” in Proc. IEEE EVSE, 2013, pp. 1-12. B. Electric Vehicles Motor [4] G. Pellegrino, A. Vagati, B. Boazzo, and P. Guglielmi, “Comparison of induction and PM synchronous motor drives for EV application including design examples,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2322-2332, 2012. [5] M. Arata, Y. Kurihara, D. Misu, and M. Matsubara, “EV and HEV motor development in TOSHIBA,” in Proc. IEEE IPEC, 2014, pp. 1874-1879. [6] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 245-254, 2015. C. Permanent-Magnet Synchronous Motor Drives Equivalent circuit modeling and parameter estimation [7] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machine and Drive System, New Jersey: Prentice Hall, Inc., 2002. [8] C. C. Liaw, C. M. Liaw, H. C. Chen, Y. C. Chang, and C. M. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC, 2003, vol. 2, pp. 1045-1051. [9] J. Y. Lee, S. H. Lee, G. H. Lee, J. P. Hong, and J. Hur, “Determination of parameters considering magnetic nonlinearity in an interior permanent magnet synchronous motor,” IEEE Trans. Magn., vol. 42, no. 4, pp. 1303-1306, 2006. [10] K. Liu, Z. Q. Zhu, and D. A. Stone, “Parameter estimation for condition monitoring of PMSM stator winding and rotor permanent magnets,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5902-5913, 2013. [11] Y. S. Park, M. M. Koo, S. M. Jang, J. Y. Choi, and D. J. You, “Dynamic characteristic analysis of interior permanent magnet synchronous motor considering varied parameters by outer disturbance based on electromagnetic field analysis,” IEEE Trans. Magn., vol. 50, no. 11, 2014. Direct torque control [12] S. Kar and S. K. Mishra, “Direct torque control of permanent magnet synchronous motor drive with a sensorless initial rotor position estimation scheme,” in Proc. IEEE APCET, 2012, pp. 1-6. [13] M. Preindl and S. Bolognani, “Model predictive direct torque control with finite control set for PMSM drive systems, part 1: maximum torque per ampere operation,” IEEE Trans. Ind. Inform., vol. 9, no. 4, pp. 1912-1921, 2013. [14] J. S. Lee and R. D. Lorenz, “Deadbeat direct torque and flux control of IPMSM drives using minimum time ramp trajectory method at voltage and current limits,” IEEE Trans. Ind. Electron., vol. 50, no. 6, pp. 3795-3804, 2014. [15] Y. S. Choi, H. H. Choi, and J. W. Jung, “Feedback linearization direct torque control with reduced torque and flux ripples for IPMSM drives,” IEEE Trans. Power. Electron., vol. 31, no. 5, pp. 3728-3737, 2016. [16] J. S. Lee and R. D. Lorenz, “Robustness analysis of deadbeat-direct torque and flux control for IPMSM drives,” IEEE Trans. Ind. Electron., vol. 63, no. 5, pp. 2775-2784, 2016. Current control [17] A. Lekshmi, R. Sankaran, and S. Ushakumari, “Comparison of performance of a closed loop PMSM drive system with modified predictive current and hysteresis controllers,” in Proc. IEEE ICEMS, 2008, pp. 2876-2881. [18] N. Prabhakar and M. K. Mishra, “Dynamic hysteresis current control to minimize switching for three-phase four-leg VSI topology to compensate nonlinear load,” IEEE Trans. Power Electron., vol. 25, no. 8, pp. 1935-1942, 2010. [19] A. M. Hava and E. Un, “Performance analysis of reduced common-mode voltage PWM methods and comparison with standard PWM methods for three-phase voltage source inverters,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 241-252, 2009. [20] M. C. Chou, C. M. Liaw, S. B. Chien, F. H. Shieh, J. R. Tsai, and H. C. Chang, “Robust current and torque controls for PMSM driven satellite reaction wheel,” IEEE Trans. Aerosp. Electron. Syst., vol. 47, no. 1, pp. 58-74, 2011. [21] H. T. Moon, H. S. Kim, and M. J. Youn, “A discrete-time predictive current control for PMSM,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 464-472, 2003. [22] W. Joerg, “Predictive current control using identification of current ripple,” IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4316-4353, 2008. [23] F. Morel, L. S. Xuefang, J. M. Retif, B. Allard, and C. Buttay, “A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2715-2728, 2009. [24] P. Cortes, J. Rodriguez, C.Silva, and A. Flores, “Delay compensation in model predictive current control of a three-phase inverter,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 1323-1325, 2012. Speed control [25] M. Kadjoudj, A. Golea, N. Golea, and M. E. Benbouzid, “Speed sliding control of PMSM drives,” in Proc. IEEE ISCIII, 2007, pp. 137-141. [26] T. Pajchrowski and K. Zawirski, “Robust speed and position control based on neural and fuzzy techniques,” in Proc. Power Electron. Appl., 2007, pp. 1-10. [27] A. V. Sant and K. R. Rajagopal, “PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4672-4675, 2009. [28] H. H. Choi, V. Q. Leu, Y. S. Choi, and J. W. Jung, “Adaptive speed controller design for a permanent magnet synchronous motor,” IET Elect. Power Appl., vol. 5, no .5, pp. 457-464, 2011. [29] J. W. Jung, V. Q. Leu, T. D. Do, E. K. Kim, and H. H. Choi, “Adaptive PID speed controller design for permanent magnet synchronous motor drives,” IEEE Trans. Power Electron., vol. 30, no .2, pp. 900-908, 2015. [30] M. Preindl and S. Bolognani, “Model predictive direct speed control with finite control set of PMSM drive systems,” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 1007-1015, 2013. Field-weakening control [31] N. V. Olarescu, M. Weinmann, S. Zeh, and S. Musuroi, “Novel flux weakening control algorithm for PMSMS,” in Proc. ICPEEE, 2009, pp. 123-127. [32] G. Pellegrino, E. Armando, and P. Guglielmi, “Direct flux field-oriented control of IPM drives with variable DC link in the field-weakening region,” IEEE Trans. Ind. Appl., vol. 45, no. 5, pp. 1619-1627, 2009. [33] T. Miyajima, H. Fujimoto, and M. Fujitsuna, “Direct voltage vector control for field weakening operation of PM machines,” in Proc. IEEE ECCE, 2011, pp. 1392-1397. [34] S. Chaithongsuk, B. N. Mobarakeh, J. P. Caron, N. Takorabet, and F. M. Tabar, “Optimal design of permanent magnet motors to improve field-weakening performances in variable speed drives,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2484-2494, 2012. [35] D. Strojan, D. Drevensek, Z. Plantic, B. Grcar, and G. Stumberger, “Novel field-weakening control scheme for permanent-magnet synchronous machines based on voltage angle control,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2390-2401, 2012. [36] S. Chaithongsuk, B. Nahid-Mobarakeh, J. P. Caron, N. Takorabet, and F. Meibody-Tabar, “Optimal design of permanent magnet motors to improve field-weakening performances in variable speed drives,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2484-2494, 2012. [37] A. Ebrahimi, M. Maier, and N. Parspour, “Analysis of torque behavior of permanent magnet synchronous motor in field-weakening operation,” in Proc. IEEE PECI, 2013, pp. 120-124. [38] S. Bolognani, S. Calligaro, and R. Petrella, ‘‘Adaptive flux-weakening controller for interior permanent magnet synchronous motor drives,’’ IEEE J. Emerging Sel. Topics Power Electron., vol. 2, no. 2, pp. 236-248, 2014. [39] M. Preindl and S. Bolognani, ‘‘Optimal state reference computation with constrained MTPA criterion for PM motor drives,’’ IEEE Trans. Power Electron., vol. 30, no. 8, pp. 4524-4535, 2015. Voltage boosting and pulse amplitude modulation [40] Y. Matsumura and N. Urasaki, “Comparison between PAM control and flux weakening control for PMSM drive,” in Proc. IEEE ICEMS, 2012, pp. 1-5. [41] H. Matsumoto and Y. Neba, “A boost driver with an improved charge-pump circuit,” IEEE Trans. Ind. Electron., vol. 61, no. 7, pp. 3178-3191, 2014. [42] C. M. Liaw, K. W. Hu, Y. S. Lin, and T. H. Yeh, “An electric vehicle IPMSM drive with interleaved front-end DC/DC converter,” IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 4493-4504, 2016. [43] T. A. Burress, “Benchmarking EV and HEV technologies,” Technical Report ORNL, 2015. [44] M. C. Chou and C. M. Liaw, “PMSM-driven satellite reaction wheel system with adjustable DC-link voltage,” IEEE Trans. Aerosp. Electron. Syst., vol. 50, no. 2, pp. 1359-1373, 2014. D. Hybrid energy storage system in EVs [45] H. Yoo, S. K. Sul, Y. Park, and J. Jeong, “System integration and power-flow management for a series hybrid electric vehicle using supercapacitors and batteries,” IEEE Trans. Ind. Appl., vol. 44, no. 1, pp. 108-114, 2008. [46] M. B. Camara, B. Dakyo, H. Gualous, and C. Nichita, “DC-DC converter control for embedded energy management supercapacitors and battery,” in Proc. IEEE IECON, 2010, pp. 2323-2328. [47] J. Cao and A. Emadi, “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 122-132, 2012. [48] P. J. Grbovic, P. Delarue, P. Le Moigne, and P. Bartholomeus, “The ultracapacitor- based regenerative controlled electric drives with power-smoothing capability,” IEEE Trans. Ind. Electron., vol. 59, no. 12, pp. 4511-4522, 2012. [49] M. Neenu and S. Muthukumaran, ‘‘A battery with ultracapacitor hybrid energy storage system in electric vehicles,’’ in Proc. IEEE ICAESM, pp. 731-735, 2012. [50] H. Xiaoliang, J. M. A. Curti, and H. Yoichi, “Energy management strategy with optimized Power interface for the battery supercapacitor hybrid system of electric vehicles,” in Proc. IEEE IECON, 2013, pp. 4635-4640. [51] J. Blanes, R. Gutierrez, A. Garrigos, J. Lizan, and J. Cuadrado, “Electric vehicle battery life extension using ultracapacitors and an FPGA controlled interleaved buck boost converter,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5940-5948, 2013. [52] W. Wang, M. Cheng, Y. Wang, B. Zhang, Y. Zhu, S. Ding, and W. Chen, “A novel energy management strategy of onboard supercapacitor for subway applications with permanent-magnet traction system,” IEEE Trans. Veh. Technol., vol. 63, no. 6, pp. 2578-2588, 2014. [53] A. Castaings, W. Lhomme, R. Trigui, and A. Bouscayrol, “Practical control schemes of a battery/supercapacitor system for electric vehicle,” IET Elect. Syst. Transport., vol. 6, no. 1, pp. 20-26, 2016. E. Photovoltaic in EVs [54] C. Hamilton, G. Gamboa, J. Elmes, R. Kerley, A. Arias, M. Pepper, J. Shen, and I. Batarseh, “System architecture of a modular direct-DC PV charging station for plug-in electric vehicles,” in Proc. IEEE IECON. Soc., pp. 2516-2520, 2010. [55] J. Yamasaki, R. Tominaga, Y. Ishii, A. Shimizu, S. Kinoshita, and S. Wakao, “Optimization of installation and operation for retail store with photovoltaic, storage battery and EV quick charger,” in Proc. IEEE PVSC., pp. 1893-1896, 2011. [56] J. I. Cairo and A. Sumper, “Requirements for EV charge stations with photovoltaic generation and storage,” in Proc. IEEE ISGT., pp. 1-6, 2012. [57] J. Traube, F. Lu, D. Maksimovic, J. Mossoba, M. Kromer, P. Faill, S. Katz, B. Borowy, S. Nichols, and L. Casey, “Mitigation of solar irradiance intermittency in photovoltaic power systems with integrated electric-vehicle charging functionality,” IEEE Trans. Power Electron., vol. 28, no. 6, pp. 3058-3067, 2013. [58] V. de la Fuente, C. L. T. Rodriguez, G. Garcera, E. Figueres, and R. O. Gonzalez, “Photovoltaic power system with battery backup with grid-connection and islanded operation capabilities,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1571-1581, 2013. [59] S. A. Singh and S. S. Williamson, “Comprehensive review of PV/EV/grid integration power electronic converter topologies for DC charging applications,” in Proc. IEEE ITEC., pp. 1-5, 2014. [60] M. Abdelhamid, R. Singh, and I. Haque, “Role of PV generated DC power in transport sector: case study of plug-in EV,” in Proc. IEEE ICDCM., pp. 299-304, 2015. F. Position Sensorless Control Methods Based on the derived variables or identified parameters [61] B. H. Bae, S. K. Sul, J. H. Kwon, and J. S. Byeon, “Implementation of sensorless vector control for super- high-speed PMSM of turbo-compressor,” IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 811-818, 2003. [62] S. Morimoto, M. Sanada, and Y. Takeda, “Mechanical sensorless drives of IPMSM with online parameter identification,” in Proc. IEEE IAS, 2005, vol. 1, no. 1, pp. 297-303. [63] S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 363-372, 2006. [64] Y. Inoue, Y. Kawaguchi, S. Morimoto, and M. Sanada, “Performance improvement of Sensorless IPMSM drives in a low-speed region using online parameter identification,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 798-804, 2011. [65] M. Hinkkanen, T. Tuovinen, L. Harnefors, and J. Luomi, “A combined position and stator-resistance observer for salient PMSM drives: design and stability analysis,” IEEE Trans. Ind. Electron., vol. 27, no. 2, pp. 601-609, 2012. [66] M. A. Hamida, J. D. Leon, A. Glumineau, and R. Boisliveau, “An adaptive interconnected observer for sensorless control of PM synchronous motors with online parameter identification,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 739-784, 2013. Observer based methods [67] Z. Chen, M. Tomita, S. Doki, and S. Okuma, “New adaptive sliding observers for position- and velocity-sensorless controls of brushless DC motors,” IEEE Trans. Ind. Electron., vol. 47, no. 3, pp. 582-591, 2000. [68] A. Piippo, M. Hinkkanen, and J. Luomi, “Analysis of an adaptive observer for sensorless control of interior permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 570-576, 2008. [69] H. Kim, J. Son, and J. Lee, “A high-speed sliding-mode observer for the sensorless speed control of a PMSM,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4069-4077, 2011. [70] S. Po-ngam and S. Sangwongwanich, “Stability and dynamic performance improvement of adaptive full-order observers for Sensorless PMSM drive,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 588-600, 2012. [71] N. K. Quang, N. T. Hieu, and Q. P. Ha, “FPGA-based sensorless PMSM speed control using reduced-order extended kalman filters,” IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 6574-6582, 2014. [72] Y. Park and S. K. Sul, “Sensorless control method for PMSM based on frequency-adaptive disturbance observer,” IEEE J. Emerging Sel. Topics Power Electron., vol. 2, no. 2, pp. 143-151, 2014. Back-EMF methods [73] F. Genduso, R. Miceli, C. Rando, and G. R. Galluzzo, “Back EMF sensorless- control algorithm for high-dynamic performance PMSM,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2092-2100, 2010. [74] R. D. Hejny and R. D. Lorenz, “Evaluating the practical low-speed limits for back-EMF tracking-based sensorless speed control using drive stiffness as a key metric,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1337-1343, 2011. [75] Z. Wang, K. Lu, and F. Blaabjerg, “A simple startup strategy based on current regulation for back-EMF-based sensorless control of PMSM,” IEEE Trans. Ind. Electron., vol. 27, no. 8, pp. 3817-3825, 2012. [76] A. Sarikhani and O. A. Mohammed, “Sensorless control of PM synchronous machines by physics-based EMF observer,” IEEE Trans. Energy Convers., vol. 27, no. 4, pp. 1009-1017, 2012. [77] X. Song, J. Fang, B. Han, and S. Zheng, “Adaptive compensation method for high-speed surface PMSM sensorless drives of EMF-based position estimation error,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1438-1449, 2016. [78] S. Morimoto, K. Kawamoto, M. Sanada, and Y. Takeda, “Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame,” IEEE Trans. Ind. Appl., vol. 38, no. 4, pp. 1054-1061, 2002. [79] S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “Sensorless control of synchronous reluctance motors based on extended EMF models considering magnetic saturation with online parameter identification,” IEEE Trans. Ind. Appl., vol. 42, no. 5, pp. 1264-1274, 2006. Methods based on rotor magnet saliency [80] F. Briz, M. W. Degner, A. Diez, and R. D. Lorenz, “Static and dynamic behavior of saturation-induced saliencies and their effect on carrier-signal-based sensorless AC drives,” IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 670-678, 2002. [81] S. Seman and J. Luomi, “Application of carrier frequency signal injection in sensorless control of a PMSM drive with forced dynamics,” in Proc. IEEE PEDS, 2003, vol. 2, pp. 1663-1668. [82] J. H. Jang, J. I. Ha, M. Ohto, K. Ide, and S. K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004. [83] J. M. Guerrero, M. Leetmaa, F. Briz, A. Zamarron, and R. D. Lorenz, “Inverter nonlinearity effects in high-frequency signal-injection-based sensorless control methods,” IEEE Trans. Ind. Appl., vol. 41, no. 2, pp. 618-626, 2005. [84] Y. Jeong, R. D. Lorenz, T. M. Jahns, and S. K. Sul, “Initial rotor position estimation of an interior permanent-magnet synchronous machine using carrier-frequency injection methods,” IEEE Trans. Ind. Appl., vol. 40, no. 1, pp. 38-45, 2005. [85] D. Raca, M. C. Harke, and R. D. Lorenz, “Robust magnet polarity estimation for initialization of PM synchronous machines with near-zero saliency,” IEEE Trans. Ind. Appl., vol. 44, no. 4, pp. 1199-1209, 2008. [86] Y. Li, Z. Q. Zhu, D. Howe, C. M. Bingham, and D. A. Stone, “Improved rotor-position estimation by signal injection in brushless AC motors, accounting for cross-coupling magnetic saturation,” IEEE Trans. Ind. Appl., vol. 45, no. 5, pp. 1843-1850, 2009. [87] H. W. De Kock, M. J. Kamper, and R. M. Kennel, “Anisotropy comparison of reluctance and PM synchronous machines for position sensorless control using HF carrier injection,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1905-1913, 2009. [88] E. de M Fernandes, A. C. Oliveira, C. B. Jacobina and A. M. N. Lima, “Comparison of HF signal injection methods for sensorless control of PM synchronous motors,” in Proc. IEEE APEC, 2010, pp. 1984-1989. [89] D. Raca, P. Garcia, D. D. Reigosa, F. Briz, and R. D. Lorenz, “Carrier-signal selection for sensorless control of PM synchronous machines at zero and very low speeds,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 167-178, 2010. [90] G. D. Andreescu and C. Schlezinger, “Enhancement sensorless control system for PMSM drives using square-wave signal injection,” in Proc. IEEE SPEEDAM, 2010, pp. 1508-1511. [91] B. Stumberger, G. Stumberger, D. Dolinar, A. Hamler, and M. Trlep, “Evaluation of saturation and cross-magentization effects in interior permanent-magnet synchronous motor,” IEEE Trans. Ind. Appl., vol. 39, no. 5, pp. 1264-1271, 2003. [92] P. Guglielmi, M. Pastorelli, and A. Vagati, “Cross saturation effects in IPM motors and related impact on zero-speed sensorless control,” in Proc. IEEE IASC, 2005, pp. 2546-2556. [93] Z. Q. Zhu, Y. Li, D. Howe, and C. M. Bingham, “Compensation for rotor position estimation error due to cross-coupling magnetic saturation in signal injection based sensorless control of PM brushless AC motors,” in Proc. IEEE IEMDC, 2007, pp. 208-213. [94] K. Ide, H. Iura, and M. Inazumi, “Hybrid sensorless control of IPMSM combining high frequency injection method and back EMF method,” in Proc. IEEE IECON, 2010, pp. 2236-2241. [95] G. Foo and M. F. Rahman, “Sensorless sliding-mode MTPA control of an IPM synchronous motor drive using a sliding-mode observer and HF signal injection,” IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1270-1278, 2010. [96] I. Hideaki, I. Masanobu, K. Takeshi, and I. Kozo, “Hybrid sensorless control of IPMSM for direct drive applications,” in Proc. IEEE IPEC, 2010, pp. 2761-2767. [97] S. Bolognani, S. Calligaro, R. Petrella, and M. Tursini, “Sensorless control of IPM motors in the low-speed range and at standstill by HF injection and DFT processing,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 96-104, 2011. G. PWM Inverters [98] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications and Design, New York: John Wiley & Sons, 2003. [99] R. González, J. López, P. Sanchis, and L. Marroyo, “Transformerless inverter for single-phase photovoltaic systems,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 693-697, 2007. [100] R. González, E. Gubia, J. López, and L. Marroyo, “Transformerless single-phase multilevel-based photovoltaic inverter,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2694-2702, 2008. [101] B. Koushki, H. Khalilinia, J. Ghaisari, and M. S. Nejad, “A new three-phase boost inverter- topology and controller,” in Proc. IEEE CCECE, 2008, pp. 757-760. [102] A. M. Hava and N. O. Cetin, “A generalized scalar PWM approach with easy implementation features for three-phase, three-wire voltage-source inverters,” IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1385-1395, 2011. [103] E. Koutroulis and F. Blaabjerg, “Methodology for the optimal design of transformerless grid-connected PV inverters,” IET Power Electron., vol. 5, no .8, pp. 1491-1499, 2012. [104] J. M. Shen, H. L. Jou, and J. C. Wu, “Transformerless single-phase three-wire line- interactive uninterruptible power supply,” IET Power Electron., vol. 5, no .9, pp. 1847-1855, 2012. [105] U. R. Prasanna and A. K. Rathore, “A novel single-reference six-pulse-modulation (SRSPM) technique-based interleaved high-frequency three-phase inverter for fuel cell vehicles,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5547-5556, 2013. [106] K. W. Hu and C. M. Liaw, “Development of a wind interior permanent-magnet synchronous generator-based microgrid and its operation control,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 4973-4985, 2015. H. Grid Connection Functions Vehicle-to-Home/Vehicle-to-Grid Discharging Operation [107] M. C. Kisacikoglu, B. Ozpineci, and L. M. Tolbert, “Examination of a PHEV bidirectional charger system for V2G reactive power compensation,” in Proc. IEEE APEC, 2010, pp. 458-465. [108] R. J. Ferreira, L. M. Miranda, R. E. Araujo, and J. P. Lopes, “A new bi-directional charger for vehicle-to-grid integration,” in Proc. IEEE ISGT, 2011, pp. 1-5. [109] M. Takagi, Y. Iwafune, K. Yamaji, H. Yamamoto, K. Okano, R. Hiwatari, and T. Ikeya, “Electricity pricing for PHEV bottom charge in daily load curve based on variation method,” in Proc. IEEE ISGT, 2012, pp. 1-6. [110] E. S. Dehaghani and S. S. Williamson, “On the inefficiency of vehicle-to-grid power flow: potential barriers and possible research directions,” in Proc. IEEE ITEC, 2012, pp. 1-5. [111] M. C. Kisacikoglu, B. Ozpineci, and L. M. Tolbert, “EV/PHEV bidirectional charger assessment for V2G reactive power operation,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5717-5727, 2013. [112] M. Yilmaz and P. T. Krein, “Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5673-5689, 2013. [113] T. S. Ustun, C. R. Ozansoy, and A. Zayegh, “Implementing vehicle-to-grid (V2G) technology with IEC 61850-7-420,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 1180-1187, 2013. [114] C. Liu, K. T. Chau, D. Wu, and S. Gao, “Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies,” in Proc. IEEE, vol. 101, no. 11, pp. 2409-2427, 2013. [115] F. Berthold, A. Ravey, B. Blunier, D. Bouquain, S. Williamson, and A. Miraoui, “Design and development of a smart control strategy for plug-in hybrid vehicles including vehicle-to-home functionality,” IEEE Trans. Transport. Electrific., vol. 1, no. 2, pp. 168-177, 2015. [116] K. W. Hu, P. H. Yi, and C. M. Liaw, “An EV SRM drive powered by battery/super-capacitor with G2V and V2H/V2G capabilities,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4714-4727, 2015. [117] M. C. Kisacikoglu, M. Kesler, and L. M. Tolbert, “Single-phase on-board bidirectional PEV charger for V2G reactive power operation,” IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 767-775, 2015. [118] V. Monteiro, J. G. Pinto, and J. L. Afonso, “Operation modes for the electric vehicle in smart grids and smart homes: present and proposed modes,” IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1007-1020, 2016. [119] K. W. Hu and C. M. Liaw, “Incorporated operation control of DC microgrid and electric vehicle,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 202-215, 2016. I. Front-end Converters and Switch-mode Rectifiers [120] Y. Du, S. Lukic, B. Jacobson, and A. Huang, “A review of high power isolated bi-directional DC-DC converters for PHEV/EV DC charging infrastructure,” in Proc. IEEE ECCE, 2011, pp. 553-560. [121] Y. Du, X. Zhou, S. Bai, S. Lukic, and A. Huang, “Review of non-isolated bi-directional DC-DC converters for plug-in hybrid electric vehicle charge station application at municipal parking decks,” in Proc. IEEE APEC, 2010, pp. 1145-1151. [122] H. C. Chang and C. M. Liaw, “An integrated driving/charging switched reluctance motor drive using three-phase power module,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1763-1775, 2011. [123] T. Mishima, K. Akamatsu, and M. Nakaoka, “A high frequency-link secondary- side phase-shifted full-range soft-switching PWM DC-DC converter with ZCS active rectifier for EV battery chargers,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5758-5773, 2013. [124] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer, and M. Badawy, “Performance analysis of bidirectional DC-DC converters for electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3442-3452, 2015. [125] E. Mese, Y. Yasa, H. Akca, M. G. Aydeniz, and M. Garip, “Investigating operating modes and converter options of dual winding permanent magnet synchronous machines for hybrid electric vehicles,” IEEE Trans. Energy Convers., vol. 30, no. 1, pp. 285-295, 2015. [126] O. C. Onar, J. Kobayashi, and A. Khaligh, “A bidirectional high-power-quality grid interface with a novel bidirectional noninverted buck-boost converter for PHEVs,” IEEE Trans. Veh. Technol., vol. 61, no. 5, pp. 2018-2032, Jun. 2012. [127] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151-2169, 2013. [128] S. Haghbin, S. Lundmark, M. Alakula, and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: review and new solution,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 459-473, 2013. [129] M. A. Khan, I. Husain, and Y. Sozer, “Integrated electric motor drive and power electronics for bidirectional power between the electric vehicle and DC or AC grid,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5774-5783, 2013. [130] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of- the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, 2015. [131] B. Koushki, A. Safaee, P. Jain, and A. Bakhshai “Review and comparison of bi-directional AC-DC converters with V2G capability for on-board EV and HEV,” in Proc. IEEE ITEC, 2014, pp. 1-6. [132] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003. [133] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction : a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003. [134] I. Subotic, N. Bodo, and E. Levi, “Single-phase on-board integrated battery chargers for EVs based on multiphase machines,” IEEE Trans. Power Electron., vol. 31, no. 9, pp. 6511-6523, 2016. [135] L. Huber, J. Yungtaek, and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, 2008. [136] F. Musavi, W. Eberle, and W. G. Dunford, “A high-performances single-phase bridgeless interleaved PFC converter for plug-in hybrid electric vehicle battery chargers,” IEEE Trans. Ind. Appl., vol. 47, no. 4, pp. 1833-1843, 2011. [137] T. Friedli and J. W. Kolar, “The essence of three-phase PFC rectifier systems Part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013. [138] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems- Part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014. [139] I. Subotic, N. Bodo, and E. Levi, “An EV drive-train with integrated fast charging capability,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1461-1471, 2016. [140] T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids-part II: A review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528-3549, 2016. K. Others [141] “Digital signal controller TMS320F28335 data sheet,” Available: http://www.ti. com/lit/ds/symlink/tms320f28335.pdf, May 31, 2016. [142] T. J. Barlow, S. Latham, I. S. McCrae, and P. G. Boulter, “A reference book of driving cycles for use in the measurement of road vehicle emissions,” June, 2009. [143] W. F. Cheng, “Development of an electric vehicle position sensorless PMSM drive with G2V/V2H/V2G and energy harvesting capabilities,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC., 2015.
|