帳號:guest(18.118.138.145)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):宋承穎
作者(外文):Song, Cheng Ying
論文名稱(中文):升降壓轉換器介接蓄電池/超電容供電具聯網與能源收集功能之無位置感測電動車永磁同步馬達驅動系統
論文名稱(外文):A POSITION SENSORLESS BATTERY/SC POWERED EV PMSM DRIVE WITH BUCK-BOOST INTERFACE CONVERTERS HAVING GRID CONNECTED AND ENERGY HARVESTING FUNCTIONS
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang Ming
口試委員(中文):黃昌圳
楊士進
鐘太郎
口試委員(外文):Hwang, Chang Chou
Yang, Shih Chin
Jong, Tai Lang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:103061516
出版年(民國):105
畢業學年度:104
語文別:英文中文
論文頁數:201
中文關鍵詞:內置磁石永磁同步馬達電動車蓄電池超電容介面轉換器再生煞車無位置感測電網至車輛車輛至電網車輛至家庭切換式整流器能源擷取太陽能光伏
外文關鍵詞:IPMSMEVbatterySCinterface converterregenerative brakingsensorlessG2VV2GV2Hswitch-mode rectifierenergy harvestingPV
相關次數:
  • 推薦推薦:0
  • 點閱點閱:81
  • 評分評分:*****
  • 下載下載:39
  • 收藏收藏:0
本論文旨在開發一由蓄電池/超電容供電之電動車用內置磁石永磁同步馬達驅動系統同時具有聯網及能源擷取功能。蓄電池與超電容分別經由各自之雙向昇/降壓轉換器介接至馬達驅動系統之直流鏈。蓄電池之介面採用交錯式轉換器,以降低漣波並固有故障容忍性。在廣速度範圍下,直流鏈電壓可以低於或高於蓄電池電壓。超電容可以快速釋放能量幫助馬達急加速及儲存再生煞車回送之能量,再轉存至蓄電池。標準與無位置感測控制電動車內置磁石永磁同步馬達驅動系統均建構並比較評定其性能。所提之高頻注入無位置感測控制機構,利用改變之高頻注入信號頻率,減少馬達固有之反電動勢諧波影響。透過適當之控制,所建驅動系統具良好之驅控特性,包含加/減速、反轉及再生煞車。
在閒置時,所開發之電動車可以利用其驅動器之內具元件從事電網至車輛、車輛至電網和車輛至家庭等操作。在電網至車輛操作上,以切換式整流器建構之車載充電器,可獲得良好之交流入電電力品質。至於車輛至家庭/車輛至電網之操作,所建構之單相三線式變頻器可產出具良好波形品質的220V/110V 60Hz交流電壓,供電給家用電器。更甚者,可回送預設之功率至市電。
對於所建構之能源收集系統,車輛於任何情況下,車頂之太陽能光伏可直接對電池充電。於閒置時,可取用之直流源或單相交流電源均可透過所建構之昇壓型切換式整流器對電池進行輔助充電。
This thesis develops an electric vehicle (EV) interior permanent magnet synchronous motor (IPMSM) drive powered by battery/supercapacitor (SC) with grid-connected and energy harvesting functions. Both the battery and the SC are respectively interfaced to the motor drive DC-link via its own bidirectional buck-boost converter. And the interleaved converter is adopted for the battery to possess redundant capability. The DC-link voltage can be varied below or above the battery voltage in wide speed range. The SC can quickly discharge energy to assist the motor rapid acceleration and store the recovered regenerative braking energy and transfer to the battery. Both standard and position sensorless controls for the EV IPMSM drive are conducted and comparatively evaluated. The high-frequency injection (HFI) sensorless control approach with changed injection frequencies is proposed to reduce the inherent back-EMF harmonic effects. Through proper control, good driving performances are preserved, including acceleration/deceleration, reversible and regenerative braking operations.
In idle condition, the developed EV motor drive can be arranged to possess grid-to- vehicle (G2V), vehicle-to-grid (V2G) and vehicle-to-home (V2H) operations using the embedded motor drive components. In G2V operation, an on-board switch-mode rectifier (SMR) based charger is formed to perform battery charging with good line drawn power quality. As to the V2H/V2G operations, the 220V/110V 60Hz AC output voltages with good waveform quality are generated from the developed single-phase three-wire (1P3W) inverter to power home appliances. The preset power can also be sent back to the utility grid.
As to the established energy harvesting system, the roof mounted PV can directly charge the battery in any conditions. In idle case, the accessible DC source or single-phase AC source can charge the battery via the constructed boost SMR.
ACKNOWLEDGEMENT i
ABSTRACT ii
LIST OF CONTENTS iii
LIST OF FIGURES vii
LIST OF TABLES xviii
LIST OF SYMBOLS xx
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 BASICS OF PERMANENT-MAGNET SYNCHRONOUS MOTOR DRIVES AND ELECTRIC VEHICLES 7
2.1 Introduction 7
2.2 PMSM Drives 7
A. Motor Structures 8
B. Physical Modeling 9
C. Parameter Estimation of the Employed PMSM 12
2.3 Electric Vehicles 16
A. Classifications of EVs 16
B. Power Control Units 17
C. EV Emulated Load 18
2.4 Energy Storage Devices 22
A. Battery 22
B. Supercapacitor 22
2.5 Electric Vehicle as a Movable Energy Storage 24
2.6 Interface Power Converters 25
A. DC/DC Converters 25
B. AC/DC Switched-Mode Rectifiers . 26
C. PWM Inverters 27
D. Possible Single-phase Three-wire Inverters 29
2.7 Some Integrated Converters Capable of Grid-connected Operations 31
2.8 The Developed EV IPMSM Drive 34
CHAPTER 3 STANDARD AND POSITION SENSORLESS ELECTRIC VEHICLE IPMSM DRIVES 36
3.1 Introduction 36
3.2 Standard EV IPMSM Drive 36
A. Functional Descriptions 38
B. Power Circuit 40
C. Control Schemes of IPMSM Drive 40
3.3 Battery Interface DC/DC Converter 43
A. Power Circuit Operation 43
B. Design of Power Circuit Components 47
C. Control Schemes 48
D. Experimental Performance Evaluation for the Front-end DC/DC Converter 55
3.4 Experimental Evaluation of Standard EV IPMSM Drive 56
A. Starting Characteristics 56
B. Steady-state Characteristics 57
C. Speed Dynamic Response 58
D. Some Key Issues in Performance Enhancements 59
E. Acceleration/Deceleration, Reversible and Regenerative Braking Characteristics 63
F. Adjustable DC-link Voltage 65
G. Fault-tolerant Capability 75
3.5 Standard EV IPMSM Drive Incorporated with SC 76
A. System Configuration 76
B. SC Bidirectional Buck-boost/Buck-boost Interface Converter 77
C. Experimental Verification 79
3.6 Dynamic Braking 86
3.7 Position Sensorless EV IPMSM Drive 88
A. System Configuration 88
B. Phase Voltage Equation 88
C. Current and Speed Control Schemes 91
3.8 Experimental Evaluation of Position Sensorless EV IPMSM Drive 95
A. Starting Characteristics 95
B. Steady-state Characteristics 96
C. Dynamic Speed Response 99
D. Acceleration/Deceleration Characteristics 102
E. Regenerative Braking Characteristics 104
F. Effects of Fixed-frequency and Varied-frequency Injected Signals 106
CHAPTER 4 MOVABLE ENERGY STORAGE APPLICATIONS OF THE ESTABLISHED EV IPMSM DRIVE 108
4.1 Introduction 108
4.2 G2V Charging Operation 108
4.2.1 System Configuration 108
4.2.2 Single-phase Boost SMR Based G2V Charger110
A. Single-phase Boost SMR 110
B. Single-phase H-bridge Boost SMR Based Battery Charger 114
4.2.3 Three-phase Boost SMR Based G2V Charger 115
A. Three-phase Boost SMR 115
B. Three-phase Boost SMR Based Battery Charger120
4.3 Functional Description of V2H/V2G Modes 121
4.4 V2H Discharging Operation 122
A. Power Circuit 124
B. Modeling of 1P3W Inverter 124
C. Inverter Control Schemes 126
D. Experimental Results 128
4.5 V2G Discharging Operation 133
A. System Configuration and Functional Description 133
B. Control Schemes 134
C. Experimental Results 137
CHAPTER 5 EV ON-BOARD BATTERY AUXILIARY CHARGING VIA ENERGY HARVESTING SYSTEM 161
5.1 Introduction 161
5.2 System Configuration 161
5.3 The Established Single-phase Bridgeless SMR 162
A. Interleaved Buck-Boost DC/DC Converter 162
B. Single-phase Bridgeless Boost SMR 165
C. Plug-in SMR Based Auxiliary Battery Charger with AC Source Input 173
D. Plug-in SMR Based Auxiliary Battery Charger with DC Source Input 176
5.4 Harvested PV Source via DC/DC Boost Converter 183
A. Power Circuit 183
B. Control Scheme 185
C. Experimental Verification 185
CHAPTER 6 CONCLUSIONS 187
REFERENCES 189
A. Electric Vehicles
[1] S. G. Wirasingha and A. Emadi, “Classification and review of control strategies for plug-in hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 111-122, 2011.
[2] K. Rajashekara, “Present status and future trends in electric vehicle propulsion technologies,” IEEE Trans. Power Electron., vol. 1, no. 1, pp. 3-10, 2013.
[3] B. Frieske, M. Kloetzke, and F. Mauser, “Trends in vehicle concept and key technology development for hybrid and battery electric vehicles,” in Proc. IEEE EVSE, 2013, pp. 1-12.
B. Electric Vehicles Motor
[4] G. Pellegrino, A. Vagati, B. Boazzo, and P. Guglielmi, “Comparison of induction and PM synchronous motor drives for EV application including design examples,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2322-2332, 2012.
[5] M. Arata, Y. Kurihara, D. Misu, and M. Matsubara, “EV and HEV motor development in TOSHIBA,” in Proc. IEEE IPEC, 2014, pp. 1874-1879.
[6] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 245-254, 2015.
C. Permanent-Magnet Synchronous Motor Drives
Equivalent circuit modeling and parameter estimation
[7] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machine and Drive System, New Jersey: Prentice Hall, Inc., 2002.
[8] C. C. Liaw, C. M. Liaw, H. C. Chen, Y. C. Chang, and C. M. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC, 2003, vol. 2, pp. 1045-1051.
[9] J. Y. Lee, S. H. Lee, G. H. Lee, J. P. Hong, and J. Hur, “Determination of parameters considering magnetic nonlinearity in an interior permanent magnet synchronous motor,” IEEE Trans. Magn., vol. 42, no. 4, pp. 1303-1306, 2006.
[10] K. Liu, Z. Q. Zhu, and D. A. Stone, “Parameter estimation for condition monitoring of PMSM stator winding and rotor permanent magnets,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5902-5913, 2013.
[11] Y. S. Park, M. M. Koo, S. M. Jang, J. Y. Choi, and D. J. You, “Dynamic characteristic analysis of interior permanent magnet synchronous motor considering varied parameters by outer disturbance based on electromagnetic field analysis,” IEEE Trans. Magn., vol. 50, no. 11, 2014.
Direct torque control
[12] S. Kar and S. K. Mishra, “Direct torque control of permanent magnet synchronous motor drive with a sensorless initial rotor position estimation scheme,” in Proc. IEEE APCET, 2012, pp. 1-6.
[13] M. Preindl and S. Bolognani, “Model predictive direct torque control with finite control set for PMSM drive systems, part 1: maximum torque per ampere operation,” IEEE Trans. Ind. Inform., vol. 9, no. 4, pp. 1912-1921, 2013.
[14] J. S. Lee and R. D. Lorenz, “Deadbeat direct torque and flux control of IPMSM drives using minimum time ramp trajectory method at voltage and current limits,” IEEE Trans. Ind. Electron., vol. 50, no. 6, pp. 3795-3804, 2014.
[15] Y. S. Choi, H. H. Choi, and J. W. Jung, “Feedback linearization direct torque control with reduced torque and flux ripples for IPMSM drives,” IEEE Trans. Power. Electron., vol. 31, no. 5, pp. 3728-3737, 2016.
[16] J. S. Lee and R. D. Lorenz, “Robustness analysis of deadbeat-direct torque and flux control for IPMSM drives,” IEEE Trans. Ind. Electron., vol. 63, no. 5, pp. 2775-2784, 2016.
Current control
[17] A. Lekshmi, R. Sankaran, and S. Ushakumari, “Comparison of performance of a closed loop PMSM drive system with modified predictive current and hysteresis controllers,” in Proc. IEEE ICEMS, 2008, pp. 2876-2881.
[18] N. Prabhakar and M. K. Mishra, “Dynamic hysteresis current control to minimize switching for three-phase four-leg VSI topology to compensate nonlinear load,” IEEE Trans. Power Electron., vol. 25, no. 8, pp. 1935-1942, 2010.
[19] A. M. Hava and E. Un, “Performance analysis of reduced common-mode voltage PWM methods and comparison with standard PWM methods for three-phase voltage source inverters,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 241-252, 2009.
[20] M. C. Chou, C. M. Liaw, S. B. Chien, F. H. Shieh, J. R. Tsai, and H. C. Chang, “Robust current and torque controls for PMSM driven satellite reaction wheel,” IEEE Trans. Aerosp. Electron. Syst., vol. 47, no. 1, pp. 58-74, 2011.
[21] H. T. Moon, H. S. Kim, and M. J. Youn, “A discrete-time predictive current control for PMSM,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 464-472, 2003.
[22] W. Joerg, “Predictive current control using identification of current ripple,” IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4316-4353, 2008.
[23] F. Morel, L. S. Xuefang, J. M. Retif, B. Allard, and C. Buttay, “A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2715-2728, 2009.
[24] P. Cortes, J. Rodriguez, C.Silva, and A. Flores, “Delay compensation in model predictive current control of a three-phase inverter,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 1323-1325, 2012.
Speed control
[25] M. Kadjoudj, A. Golea, N. Golea, and M. E. Benbouzid, “Speed sliding control of PMSM drives,” in Proc. IEEE ISCIII, 2007, pp. 137-141.
[26] T. Pajchrowski and K. Zawirski, “Robust speed and position control based on neural and fuzzy techniques,” in Proc. Power Electron. Appl., 2007, pp. 1-10.
[27] A. V. Sant and K. R. Rajagopal, “PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4672-4675, 2009.
[28] H. H. Choi, V. Q. Leu, Y. S. Choi, and J. W. Jung, “Adaptive speed controller design for a permanent magnet synchronous motor,” IET Elect. Power Appl., vol. 5, no .5, pp. 457-464, 2011.
[29] J. W. Jung, V. Q. Leu, T. D. Do, E. K. Kim, and H. H. Choi, “Adaptive PID speed controller design for permanent magnet synchronous motor drives,” IEEE Trans. Power Electron., vol. 30, no .2, pp. 900-908, 2015.
[30] M. Preindl and S. Bolognani, “Model predictive direct speed control with finite control set of PMSM drive systems,” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 1007-1015, 2013.
Field-weakening control
[31] N. V. Olarescu, M. Weinmann, S. Zeh, and S. Musuroi, “Novel flux weakening control algorithm for PMSMS,” in Proc. ICPEEE, 2009, pp. 123-127.
[32] G. Pellegrino, E. Armando, and P. Guglielmi, “Direct flux field-oriented control of IPM drives with variable DC link in the field-weakening region,” IEEE Trans. Ind. Appl., vol. 45, no. 5, pp. 1619-1627, 2009.
[33] T. Miyajima, H. Fujimoto, and M. Fujitsuna, “Direct voltage vector control for field weakening operation of PM machines,” in Proc. IEEE ECCE, 2011, pp. 1392-1397.
[34] S. Chaithongsuk, B. N. Mobarakeh, J. P. Caron, N. Takorabet, and F. M. Tabar, “Optimal design of permanent magnet motors to improve field-weakening performances in variable speed drives,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2484-2494, 2012.
[35] D. Strojan, D. Drevensek, Z. Plantic, B. Grcar, and G. Stumberger, “Novel field-weakening control scheme for permanent-magnet synchronous machines based on voltage angle control,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2390-2401, 2012.
[36] S. Chaithongsuk, B. Nahid-Mobarakeh, J. P. Caron, N. Takorabet, and F. Meibody-Tabar, “Optimal design of permanent magnet motors to improve field-weakening performances in variable speed drives,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2484-2494, 2012.
[37] A. Ebrahimi, M. Maier, and N. Parspour, “Analysis of torque behavior of permanent magnet synchronous motor in field-weakening operation,” in Proc. IEEE PECI, 2013, pp. 120-124.
[38] S. Bolognani, S. Calligaro, and R. Petrella, ‘‘Adaptive flux-weakening controller for interior permanent magnet synchronous motor drives,’’ IEEE J. Emerging Sel. Topics Power Electron., vol. 2, no. 2, pp. 236-248, 2014.
[39] M. Preindl and S. Bolognani, ‘‘Optimal state reference computation with constrained MTPA criterion for PM motor drives,’’ IEEE Trans. Power Electron., vol. 30, no. 8, pp. 4524-4535, 2015.
Voltage boosting and pulse amplitude modulation
[40] Y. Matsumura and N. Urasaki, “Comparison between PAM control and flux weakening control for PMSM drive,” in Proc. IEEE ICEMS, 2012, pp. 1-5.
[41] H. Matsumoto and Y. Neba, “A boost driver with an improved charge-pump circuit,” IEEE Trans. Ind. Electron., vol. 61, no. 7, pp. 3178-3191, 2014.
[42] C. M. Liaw, K. W. Hu, Y. S. Lin, and T. H. Yeh, “An electric vehicle IPMSM drive with interleaved front-end DC/DC converter,” IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 4493-4504, 2016.
[43] T. A. Burress, “Benchmarking EV and HEV technologies,” Technical Report ORNL, 2015.
[44] M. C. Chou and C. M. Liaw, “PMSM-driven satellite reaction wheel system with adjustable DC-link voltage,” IEEE Trans. Aerosp. Electron. Syst., vol. 50, no. 2, pp. 1359-1373, 2014.
D. Hybrid energy storage system in EVs
[45] H. Yoo, S. K. Sul, Y. Park, and J. Jeong, “System integration and power-flow management for a series hybrid electric vehicle using supercapacitors and batteries,” IEEE Trans. Ind. Appl., vol. 44, no. 1, pp. 108-114, 2008.
[46] M. B. Camara, B. Dakyo, H. Gualous, and C. Nichita, “DC-DC converter control for embedded energy management supercapacitors and battery,” in Proc. IEEE IECON, 2010, pp. 2323-2328.
[47] J. Cao and A. Emadi, “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 122-132, 2012.
[48] P. J. Grbovic, P. Delarue, P. Le Moigne, and P. Bartholomeus, “The ultracapacitor- based regenerative controlled electric drives with power-smoothing capability,” IEEE Trans. Ind. Electron., vol. 59, no. 12, pp. 4511-4522, 2012.
[49] M. Neenu and S. Muthukumaran, ‘‘A battery with ultracapacitor hybrid energy storage system in electric vehicles,’’ in Proc. IEEE ICAESM, pp. 731-735, 2012.
[50] H. Xiaoliang, J. M. A. Curti, and H. Yoichi, “Energy management strategy with optimized Power interface for the battery supercapacitor hybrid system of electric vehicles,” in Proc. IEEE IECON, 2013, pp. 4635-4640.
[51] J. Blanes, R. Gutierrez, A. Garrigos, J. Lizan, and J. Cuadrado, “Electric vehicle battery life extension using ultracapacitors and an FPGA controlled interleaved buck boost converter,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5940-5948, 2013.
[52] W. Wang, M. Cheng, Y. Wang, B. Zhang, Y. Zhu, S. Ding, and W. Chen, “A novel energy management strategy of onboard supercapacitor for subway applications with permanent-magnet traction system,” IEEE Trans. Veh. Technol., vol. 63, no. 6, pp. 2578-2588, 2014.
[53] A. Castaings, W. Lhomme, R. Trigui, and A. Bouscayrol, “Practical control schemes of a battery/supercapacitor system for electric vehicle,” IET Elect. Syst. Transport., vol. 6, no. 1, pp. 20-26, 2016.
E. Photovoltaic in EVs
[54] C. Hamilton, G. Gamboa, J. Elmes, R. Kerley, A. Arias, M. Pepper, J. Shen, and I. Batarseh, “System architecture of a modular direct-DC PV charging station for plug-in electric vehicles,” in Proc. IEEE IECON. Soc., pp. 2516-2520, 2010.
[55] J. Yamasaki, R. Tominaga, Y. Ishii, A. Shimizu, S. Kinoshita, and S. Wakao, “Optimization of installation and operation for retail store with photovoltaic, storage battery and EV quick charger,” in Proc. IEEE PVSC., pp. 1893-1896, 2011.
[56] J. I. Cairo and A. Sumper, “Requirements for EV charge stations with photovoltaic generation and storage,” in Proc. IEEE ISGT., pp. 1-6, 2012.
[57] J. Traube, F. Lu, D. Maksimovic, J. Mossoba, M. Kromer, P. Faill, S. Katz, B. Borowy, S. Nichols, and L. Casey, “Mitigation of solar irradiance intermittency in photovoltaic power systems with integrated electric-vehicle charging functionality,” IEEE Trans. Power Electron., vol. 28, no. 6, pp. 3058-3067, 2013.
[58] V. de la Fuente, C. L. T. Rodriguez, G. Garcera, E. Figueres, and R. O. Gonzalez, “Photovoltaic power system with battery backup with grid-connection and islanded operation capabilities,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1571-1581, 2013.
[59] S. A. Singh and S. S. Williamson, “Comprehensive review of PV/EV/grid integration power electronic converter topologies for DC charging applications,” in Proc. IEEE ITEC., pp. 1-5, 2014.
[60] M. Abdelhamid, R. Singh, and I. Haque, “Role of PV generated DC power in transport sector: case study of plug-in EV,” in Proc. IEEE ICDCM., pp. 299-304, 2015.
F. Position Sensorless Control Methods
Based on the derived variables or identified parameters
[61] B. H. Bae, S. K. Sul, J. H. Kwon, and J. S. Byeon, “Implementation of sensorless vector control for super- high-speed PMSM of turbo-compressor,” IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 811-818, 2003.
[62] S. Morimoto, M. Sanada, and Y. Takeda, “Mechanical sensorless drives of IPMSM with online parameter identification,” in Proc. IEEE IAS, 2005, vol. 1, no. 1, pp. 297-303.
[63] S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 363-372, 2006.
[64] Y. Inoue, Y. Kawaguchi, S. Morimoto, and M. Sanada, “Performance improvement of Sensorless IPMSM drives in a low-speed region using online parameter identification,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 798-804, 2011.
[65] M. Hinkkanen, T. Tuovinen, L. Harnefors, and J. Luomi, “A combined position and stator-resistance observer for salient PMSM drives: design and stability analysis,” IEEE Trans. Ind. Electron., vol. 27, no. 2, pp. 601-609, 2012.
[66] M. A. Hamida, J. D. Leon, A. Glumineau, and R. Boisliveau, “An adaptive interconnected observer for sensorless control of PM synchronous motors with online parameter identification,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 739-784, 2013.
Observer based methods
[67] Z. Chen, M. Tomita, S. Doki, and S. Okuma, “New adaptive sliding observers for position- and velocity-sensorless controls of brushless DC motors,” IEEE Trans. Ind. Electron., vol. 47, no. 3, pp. 582-591, 2000.
[68] A. Piippo, M. Hinkkanen, and J. Luomi, “Analysis of an adaptive observer for sensorless control of interior permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 570-576, 2008.
[69] H. Kim, J. Son, and J. Lee, “A high-speed sliding-mode observer for the sensorless speed control of a PMSM,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4069-4077, 2011.
[70] S. Po-ngam and S. Sangwongwanich, “Stability and dynamic performance improvement of adaptive full-order observers for Sensorless PMSM drive,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 588-600, 2012.
[71] N. K. Quang, N. T. Hieu, and Q. P. Ha, “FPGA-based sensorless PMSM speed control using reduced-order extended kalman filters,” IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 6574-6582, 2014.
[72] Y. Park and S. K. Sul, “Sensorless control method for PMSM based on frequency-adaptive disturbance observer,” IEEE J. Emerging Sel. Topics Power Electron., vol. 2, no. 2, pp. 143-151, 2014.
Back-EMF methods
[73] F. Genduso, R. Miceli, C. Rando, and G. R. Galluzzo, “Back EMF sensorless- control algorithm for high-dynamic performance PMSM,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2092-2100, 2010.
[74] R. D. Hejny and R. D. Lorenz, “Evaluating the practical low-speed limits for back-EMF tracking-based sensorless speed control using drive stiffness as a key metric,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1337-1343, 2011.
[75] Z. Wang, K. Lu, and F. Blaabjerg, “A simple startup strategy based on current regulation for back-EMF-based sensorless control of PMSM,” IEEE Trans. Ind. Electron., vol. 27, no. 8, pp. 3817-3825, 2012.
[76] A. Sarikhani and O. A. Mohammed, “Sensorless control of PM synchronous machines by physics-based EMF observer,” IEEE Trans. Energy Convers., vol. 27, no. 4, pp. 1009-1017, 2012.
[77] X. Song, J. Fang, B. Han, and S. Zheng, “Adaptive compensation method for high-speed surface PMSM sensorless drives of EMF-based position estimation error,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1438-1449, 2016.
[78] S. Morimoto, K. Kawamoto, M. Sanada, and Y. Takeda, “Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame,” IEEE Trans. Ind. Appl., vol. 38, no. 4, pp. 1054-1061, 2002.
[79] S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “Sensorless control of synchronous reluctance motors based on extended EMF models considering magnetic saturation with online parameter identification,” IEEE Trans. Ind. Appl., vol. 42, no. 5, pp. 1264-1274, 2006.
Methods based on rotor magnet saliency
[80] F. Briz, M. W. Degner, A. Diez, and R. D. Lorenz, “Static and dynamic behavior of saturation-induced saliencies and their effect on carrier-signal-based sensorless AC drives,” IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 670-678, 2002.
[81] S. Seman and J. Luomi, “Application of carrier frequency signal injection in sensorless control of a PMSM drive with forced dynamics,” in Proc. IEEE PEDS, 2003, vol. 2, pp. 1663-1668.
[82] J. H. Jang, J. I. Ha, M. Ohto, K. Ide, and S. K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004.
[83] J. M. Guerrero, M. Leetmaa, F. Briz, A. Zamarron, and R. D. Lorenz, “Inverter nonlinearity effects in high-frequency signal-injection-based sensorless control methods,” IEEE Trans. Ind. Appl., vol. 41, no. 2, pp. 618-626, 2005.
[84] Y. Jeong, R. D. Lorenz, T. M. Jahns, and S. K. Sul, “Initial rotor position estimation of an interior permanent-magnet synchronous machine using carrier-frequency injection methods,” IEEE Trans. Ind. Appl., vol. 40, no. 1, pp. 38-45, 2005.
[85] D. Raca, M. C. Harke, and R. D. Lorenz, “Robust magnet polarity estimation for initialization of PM synchronous machines with near-zero saliency,” IEEE Trans. Ind. Appl., vol. 44, no. 4, pp. 1199-1209, 2008.
[86] Y. Li, Z. Q. Zhu, D. Howe, C. M. Bingham, and D. A. Stone, “Improved rotor-position estimation by signal injection in brushless AC motors, accounting for cross-coupling magnetic saturation,” IEEE Trans. Ind. Appl., vol. 45, no. 5, pp. 1843-1850, 2009.
[87] H. W. De Kock, M. J. Kamper, and R. M. Kennel, “Anisotropy comparison of reluctance and PM synchronous machines for position sensorless control using HF carrier injection,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1905-1913, 2009.
[88] E. de M Fernandes, A. C. Oliveira, C. B. Jacobina and A. M. N. Lima, “Comparison of HF signal injection methods for sensorless control of PM synchronous motors,” in Proc. IEEE APEC, 2010, pp. 1984-1989.
[89] D. Raca, P. Garcia, D. D. Reigosa, F. Briz, and R. D. Lorenz, “Carrier-signal selection for sensorless control of PM synchronous machines at zero and very low speeds,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 167-178, 2010.
[90] G. D. Andreescu and C. Schlezinger, “Enhancement sensorless control system for PMSM drives using square-wave signal injection,” in Proc. IEEE SPEEDAM, 2010, pp. 1508-1511.
[91] B. Stumberger, G. Stumberger, D. Dolinar, A. Hamler, and M. Trlep, “Evaluation of saturation and cross-magentization effects in interior permanent-magnet synchronous motor,” IEEE Trans. Ind. Appl., vol. 39, no. 5, pp. 1264-1271, 2003.
[92] P. Guglielmi, M. Pastorelli, and A. Vagati, “Cross saturation effects in IPM motors and related impact on zero-speed sensorless control,” in Proc. IEEE IASC, 2005, pp. 2546-2556.
[93] Z. Q. Zhu, Y. Li, D. Howe, and C. M. Bingham, “Compensation for rotor position estimation error due to cross-coupling magnetic saturation in signal injection based sensorless control of PM brushless AC motors,” in Proc. IEEE IEMDC, 2007, pp. 208-213.
[94] K. Ide, H. Iura, and M. Inazumi, “Hybrid sensorless control of IPMSM combining high frequency injection method and back EMF method,” in Proc. IEEE IECON, 2010, pp. 2236-2241.
[95] G. Foo and M. F. Rahman, “Sensorless sliding-mode MTPA control of an IPM synchronous motor drive using a sliding-mode observer and HF signal injection,” IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1270-1278, 2010.
[96] I. Hideaki, I. Masanobu, K. Takeshi, and I. Kozo, “Hybrid sensorless control of IPMSM for direct drive applications,” in Proc. IEEE IPEC, 2010, pp. 2761-2767.
[97] S. Bolognani, S. Calligaro, R. Petrella, and M. Tursini, “Sensorless control of IPM motors in the low-speed range and at standstill by HF injection and DFT processing,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 96-104, 2011.
G. PWM Inverters
[98] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications and Design, New York: John Wiley & Sons, 2003.
[99] R. González, J. López, P. Sanchis, and L. Marroyo, “Transformerless inverter for single-phase photovoltaic systems,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 693-697, 2007.
[100] R. González, E. Gubia, J. López, and L. Marroyo, “Transformerless single-phase multilevel-based photovoltaic inverter,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2694-2702, 2008.
[101] B. Koushki, H. Khalilinia, J. Ghaisari, and M. S. Nejad, “A new three-phase boost inverter- topology and controller,” in Proc. IEEE CCECE, 2008, pp. 757-760.
[102] A. M. Hava and N. O. Cetin, “A generalized scalar PWM approach with easy implementation features for three-phase, three-wire voltage-source inverters,” IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1385-1395, 2011.
[103] E. Koutroulis and F. Blaabjerg, “Methodology for the optimal design of transformerless grid-connected PV inverters,” IET Power Electron., vol. 5, no .8, pp. 1491-1499, 2012.
[104] J. M. Shen, H. L. Jou, and J. C. Wu, “Transformerless single-phase three-wire line- interactive uninterruptible power supply,” IET Power Electron., vol. 5, no .9, pp. 1847-1855, 2012.
[105] U. R. Prasanna and A. K. Rathore, “A novel single-reference six-pulse-modulation (SRSPM) technique-based interleaved high-frequency three-phase inverter for fuel cell vehicles,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5547-5556, 2013.
[106] K. W. Hu and C. M. Liaw, “Development of a wind interior permanent-magnet synchronous generator-based microgrid and its operation control,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 4973-4985, 2015.
H. Grid Connection Functions
Vehicle-to-Home/Vehicle-to-Grid Discharging Operation
[107] M. C. Kisacikoglu, B. Ozpineci, and L. M. Tolbert, “Examination of a PHEV bidirectional charger system for V2G reactive power compensation,” in Proc. IEEE APEC, 2010, pp. 458-465.
[108] R. J. Ferreira, L. M. Miranda, R. E. Araujo, and J. P. Lopes, “A new bi-directional charger for vehicle-to-grid integration,” in Proc. IEEE ISGT, 2011, pp. 1-5.
[109] M. Takagi, Y. Iwafune, K. Yamaji, H. Yamamoto, K. Okano, R. Hiwatari, and T. Ikeya, “Electricity pricing for PHEV bottom charge in daily load curve based on variation method,” in Proc. IEEE ISGT, 2012, pp. 1-6.
[110] E. S. Dehaghani and S. S. Williamson, “On the inefficiency of vehicle-to-grid power flow: potential barriers and possible research directions,” in Proc. IEEE ITEC, 2012, pp. 1-5.
[111] M. C. Kisacikoglu, B. Ozpineci, and L. M. Tolbert, “EV/PHEV bidirectional charger assessment for V2G reactive power operation,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5717-5727, 2013.
[112] M. Yilmaz and P. T. Krein, “Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5673-5689, 2013.
[113] T. S. Ustun, C. R. Ozansoy, and A. Zayegh, “Implementing vehicle-to-grid (V2G) technology with IEC 61850-7-420,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 1180-1187, 2013.
[114] C. Liu, K. T. Chau, D. Wu, and S. Gao, “Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies,” in Proc. IEEE, vol. 101, no. 11, pp. 2409-2427, 2013.
[115] F. Berthold, A. Ravey, B. Blunier, D. Bouquain, S. Williamson, and A. Miraoui, “Design and development of a smart control strategy for plug-in hybrid vehicles including vehicle-to-home functionality,” IEEE Trans. Transport. Electrific., vol. 1, no. 2, pp. 168-177, 2015.
[116] K. W. Hu, P. H. Yi, and C. M. Liaw, “An EV SRM drive powered by battery/super-capacitor with G2V and V2H/V2G capabilities,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4714-4727, 2015.
[117] M. C. Kisacikoglu, M. Kesler, and L. M. Tolbert, “Single-phase on-board bidirectional PEV charger for V2G reactive power operation,” IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 767-775, 2015.
[118] V. Monteiro, J. G. Pinto, and J. L. Afonso, “Operation modes for the electric vehicle in smart grids and smart homes: present and proposed modes,” IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1007-1020, 2016.
[119] K. W. Hu and C. M. Liaw, “Incorporated operation control of DC microgrid and electric vehicle,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 202-215, 2016.
I. Front-end Converters and Switch-mode Rectifiers
[120] Y. Du, S. Lukic, B. Jacobson, and A. Huang, “A review of high power isolated bi-directional DC-DC converters for PHEV/EV DC charging infrastructure,” in Proc. IEEE ECCE, 2011, pp. 553-560.
[121] Y. Du, X. Zhou, S. Bai, S. Lukic, and A. Huang, “Review of non-isolated bi-directional DC-DC converters for plug-in hybrid electric vehicle charge station application at municipal parking decks,” in Proc. IEEE APEC, 2010, pp. 1145-1151.
[122] H. C. Chang and C. M. Liaw, “An integrated driving/charging switched reluctance motor drive using three-phase power module,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1763-1775, 2011.
[123] T. Mishima, K. Akamatsu, and M. Nakaoka, “A high frequency-link secondary- side phase-shifted full-range soft-switching PWM DC-DC converter with ZCS active rectifier for EV battery chargers,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5758-5773, 2013.
[124] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer, and M. Badawy, “Performance analysis of bidirectional DC-DC converters for electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3442-3452, 2015.
[125] E. Mese, Y. Yasa, H. Akca, M. G. Aydeniz, and M. Garip, “Investigating operating modes and converter options of dual winding permanent magnet synchronous machines for hybrid electric vehicles,” IEEE Trans. Energy Convers., vol. 30, no. 1, pp. 285-295, 2015.
[126] O. C. Onar, J. Kobayashi, and A. Khaligh, “A bidirectional high-power-quality grid interface with a novel bidirectional noninverted buck-boost converter for PHEVs,” IEEE Trans. Veh. Technol., vol. 61, no. 5, pp. 2018-2032, Jun. 2012.
[127] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151-2169, 2013.
[128] S. Haghbin, S. Lundmark, M. Alakula, and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: review and new solution,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 459-473, 2013.
[129] M. A. Khan, I. Husain, and Y. Sozer, “Integrated electric motor drive and power electronics for bidirectional power between the electric vehicle and DC or AC grid,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5774-5783, 2013.
[130] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of- the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, 2015.
[131] B. Koushki, A. Safaee, P. Jain, and A. Bakhshai “Review and comparison of bi-directional AC-DC converters with V2G capability for on-board EV and HEV,” in Proc. IEEE ITEC, 2014, pp. 1-6.
[132] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
[133] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction : a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[134] I. Subotic, N. Bodo, and E. Levi, “Single-phase on-board integrated battery chargers for EVs based on multiphase machines,” IEEE Trans. Power Electron., vol. 31, no. 9, pp. 6511-6523, 2016.
[135] L. Huber, J. Yungtaek, and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, 2008.
[136] F. Musavi, W. Eberle, and W. G. Dunford, “A high-performances single-phase bridgeless interleaved PFC converter for plug-in hybrid electric vehicle battery chargers,” IEEE Trans. Ind. Appl., vol. 47, no. 4, pp. 1833-1843, 2011.
[137] T. Friedli and J. W. Kolar, “The essence of three-phase PFC rectifier systems Part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
[138] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems- Part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014.
[139] I. Subotic, N. Bodo, and E. Levi, “An EV drive-train with integrated fast charging capability,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1461-1471, 2016.
[140] T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids-part II: A review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528-3549, 2016.
K. Others
[141] “Digital signal controller TMS320F28335 data sheet,” Available: http://www.ti. com/lit/ds/symlink/tms320f28335.pdf, May 31, 2016.
[142] T. J. Barlow, S. Latham, I. S. McCrae, and P. G. Boulter, “A reference book of driving cycles for use in the measurement of road vehicle emissions,” June, 2009.
[143] W. F. Cheng, “Development of an electric vehicle position sensorless PMSM drive with G2V/V2H/V2G and energy harvesting capabilities,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC., 2015.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *