帳號:guest(18.119.122.106)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):方琮弼
作者(外文):Fang, Tsung Pi
論文名稱(中文):100 kVA三相四線雙向轉換器數位控制研究
論文名稱(外文):Research on Digital Control for 100 kVA Bi-directional Three-Phase Four-Wire Converter
指導教授(中文):吳財福
指導教授(外文):Wu, Tsai Fu
口試委員(中文):江炫樟
鄭博泰
羅有綱
口試委員(外文):Chiang, Hsuang Chang
Cheng, Po Tai
Lo, Yu Kang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:103061515
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:76
中文關鍵詞:三相四線轉換器分切合整數位控制電感值變化
外文關鍵詞:three-phase four-wire converterdivision-summation digital controlinductance variation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:696
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文針對應用於雙向三相四線轉換器數位控制方法進行研究,並採用分切合整數位控制與六分之一線週期穩壓法,來實現100 kW雙向三相四線轉換器數位控制,其中轉換器功能包括併網、整流、直流鏈穩壓以及交流穩壓。當直流鏈電壓達到預定電壓後,依照電網需求將直流電轉換成交流電饋入市電(併網模式)或將交流電轉換成直流電饋入直流電網(整流模式)供給直流負載。在併網與整流模式下,轉換器視為一個電流源;而當市電不穩或發生故障解聯時,直流電轉換成交流電提供給交流側負載作緊急備用電源,轉換器視為一個電壓源。
分切合整數位控制是基於直接控制電流變化量,將一切換週期之電感電流變化量,採用先分開個別處理後加總所推導之控制法則。在三相應用上,可以克服abc轉d-q之座標軸轉換限制,並因將電感值隨電流變化納入控制法則中,能顯著降低電感鐵芯體積與提高轉換器性能。文中會提及轉換器的控制法則推導和控制器設計,並介紹控制流程圖與實現控制器過程中之實務考量,最後針對轉換器各功能控制進行模擬分析與電路實測來驗證其可行性。
本研究主要有兩項貢獻:第一為針對應用於雙向三相四線轉換器數位控制方法進行研究,並分類和介紹各方法之優缺點。第二項為將分切合整數位控制應用於高功率轉換器,並介紹實作過程中之實務考量,來克服元件之非理想特性所造成的影響。
This thesis focuses on studying digital controls of bi-directional three-phase four-wire converters. Division-summation (D-Σ) digital control and one-sixth line-cycle regulation approach (OSLCRA) for a high power bi-directional three-phase four-wire converter are adopted. The converter has four kinds of operation modes: rectification mode, grid-connection mode, dc-link voltage regulation mode and ac voltage regulation mode. In the grid-connection mode, power is transformed into ac and injected into the utility grid. In the rectification mode, power from the utility grid is transformed into dc to supply dc loads and replenish dc-link capacitors. Under the grid-connection mode and the rectification mode, the converter is considered as a current source. In ac regulation mode, the power is transformed into ac to supply ac loads, and the converter is considered as a voltage source served as an ac emergency source.
The D-Σ digital control is based on a current variation direct digital control, summarizing the filter inductance-current variations over one switching cycle to derive control law, which can release the limitation of abc to dq frame transformation. Besides, it takes inductance variation into consideration, and the core size can be reduced significantly and efficiency can be improved. This thesis presents design and derivation of the controller for converter. And then, description of program flowcharts and considerations of hardware implementation are presented. Finally, the converter operation modes are verified with simulated and experimental results.
There are two major contributions of this research: analyzing and comparing control approaches for bi-directional three-phase four-wire converters, and applying the D-Σ digital control to a 100 kVA and presenting considerations of hardware implementation during experimental process to overcome the problems caused by non-ideal characteristics of the components.
誌謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1-1 研究動機與目的 1
1-2 研究背景與發展 3
1-3 研究方法與系統介紹 5
1-4 論文大綱 6
第二章 交直流轉換器數位控制技術介紹 7
2-1 基於模型之即時回授控制 7
2-1-1 無拍差控制 7
2-1-2 多迴路控制 8
2-1-3 分切合整數位控制 9
2-2 前饋學習控制 10
2-2-1 重複控制 10
2-2-2 反覆學習控制 11
2-3 非線性控制 12
2-3-1 滑動模式控制 12
2-3-2 適應性控制 13
第三章 三相四線轉換器建模與控制器設計 15
3-1 分切合整數位控制推導方式 15
3-2 轉換器電流源建模 15
3-3 各模式控制器設計 18
3-3-1 併網與整流模式控制器設計 18
3-2-2 直流鏈穩壓模式控制器設計 19
3-2-3 交流穩壓模式控制器設計 22
第四章 韌體規劃 26
4-1 微控制器RX62T簡介 26
4-2 轉換器系統架構說明 28
4-3 主程式規劃 28
4-4 A/D中斷副程式規劃 30
4-5 各模式副程式規劃 32
第五章 電路模擬與實驗結果 37
5-1 轉換器規格與系統架構 37
5-2 實務考量 39
5-2-1電感值變化 39
5-2-2元件及線路阻抗補償 40
5-2-3開關死區補償 40
5-2-4 A/D取樣與責任比率更新設定 43
5-2-5模式轉換 46
5-3 轉換器電路模擬建模 48
5-4轉換器各模式模擬與實測波形 50
5-4-1併聯與整流模式 50
5-4-2直流鏈穩壓模式 56
5-4-3交流穩壓模式 59
5-5總諧波失真 70
第六章 結論與未來研究方向 71
6-1 結論 71
6-2 未來研究方向 72
參考文獻 73

[1]REN21, “Renewables 2015 Global Status Report”, May. 2015
[2]S. R. Bull, “Renewable energy today and tomorrow”, Proceedings of the IEEE, Vol. 89, No. 8, pp. 1216-1226, Aug. 2001.
[3]M. Begovic, A. Pregelj, A. Rohatgi and C. Honsberg, “Green power : status and perspectives”, Proceedings of the IEEE, Vol. 89, No. 12, pp. 1734-1743, Dec. 2001.
[4]D. Zhao, Y. Li and Y. Liu, “Optimal design and sensitive analysis of distributed generation system with renewable energy sources”, China International Conference on Electricity Distribution, pp. 456-460, Sept. 2014.
[5]J. W. Choi and S. K. Sul, “Fast current controller in three-phase AC/DC boost converter using d-q axis crosscoupling”, IEEE Trans. on Power Electronics, Vol. 13, No. 1, pp. 179-185, Jan. 1998.
[6]J. A. Torrico and E. Bim, “Fuzzy logic space vector current control of three-phase Inverters”, IEEE Proceedings on Electric Power Applications, Vol. 1, pp. 147-152, Jun. 2000.
[7]S. R. Bowes, S. Grewal and D. Holliday, “Novel adaptive hysteresis band modulation strategy for three-phase inverters”, IEE Proceedings on Electric Power Applications, Vol. 148, No. 1, pp. 51-61, Jan. 2001.
[8]D. Amato, A. Tonielli and A. Tilli, “An improved sequential hysteresis current controller for three-phase inverter: design and hardware implementation”, IEEE Proceedings on Control Applications, pp. 294-300, Sept. 2001.
[9]C. T. Pang and M. C. Jiang, “Control and implementation of a three-phase voltage-doubler reversible AC to DC converter”, IEEE Power Electronics Specialists Conference, vol. 1, pp.437-443, Jun. 1995.
[10]H. Mao, D. Boroyevich, A. Ravindra and F. C. Lee, “Analysis and design of high frequency three-phase boost rectifiers”, IEEE Conference Proceedings on Applied Power Electronics Conference and Exposition, Vol. 2, pp. 538-544, Mar. 1996.
[11]Y. Jiang, H. Mao, F. C. Lee and D. Borojevic, “Simple high performance three-phase boost rectifiers”, IEEE Power Electronics Specialists Conference, vol. 2, pp. 1158-1163, Jun. 1994.
[12]T. Jin, L. Li and K. M. Smedley, “A theoretical minimum DC-link capacitance in PWM converter-inverter systems”, IEE Proceedings on Electric Power Applications, Vol. 152, No. 1, pp. 81-88, Jan. 2005.
[13]Y. Sato, T. Ishizuka, K. Nezu and T. taoka, “A new control strategy for voltage-type PWM rectifiers to realize zero steady-state control error in input current”, IEEE Trans. on Industry Applications, Vol. 34, No. 3, pp. 480-486, Jun. 1998.
[14]Q. Zhao and Z. Yin, “Battery energy storage research of photovoltaic power generation system in micro-grid”, International Conference on Critical Infrastructure (CRIS), pp. 1-4, Sept. 2010.
[15]B. Wu, Z. Yin and X. Xiao, “Super-capacitors energy storage system applied in the micro-grid”, IEEE Conference on Industrial Electronics and Applications, pp. 1002-1005, Jun. 2010.
[16]Z. Wang, X. Li, G. Li , M. Zhou and K. L. Lo, “Energy storage control for the photovoltaic generation system in a micro-grid”, International Conference on Critical Infrastructure (CRIS), pp. 1-5, Sept. 2010.
[17]A. L. Dimeas and N. D. Hatziargyriou, “Operation of a Multiagent System for Microgrid Control”, IEEE Trans. on Power Systems, vol. 20, No. 3, pp. 1447-1455, Aug. 2005.
[18]J. A. P. Lopes, C. L. Moreira and A. G. Madureira, “Defining control strategies for MicroGrids islanded operation”, IEEE Trans. on Power Systems, vol. 21, No. 2, pp. 916-924, May 2006.
[19]L. N. Khanh, J. J. Seo, Y. S. Kim and D. J. Won, “Power-Management Strategies for a Grid-Connected PV-FC Hybrid System”, IEEE Trans. on Power Delivery, vol. 25, No. 3, pp. 1874-1882, Jul. 2010.
[20]D. D. C. Lu and V. G. Agelidis, “Photovoltaic-battery-powered DC bus system for common portable electronic devices”, IEEE Trans. on Power Electronics, vol. 24, No. 3, pp. 849-855, Apr. 2009.
[21]B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of three-phase improved power quality AC-DC converters”, IEEE Trans. on Industrial Electronics, vol. 51, No. 3, pp. 641-660, Jun. 2004.
[22]H. Deng, R. Oruganti and D. Srinivasan, “Modeling and Control of Single-Phase UPS Inverters: A Survey”, International Conference on Power Electronics and Drives Systems, vol. 2, pp. 848-853, Nov. 2005.
[23]A. Kawamura, T. Haneyoshi and R. G. Hoft, “Deadbeat controlled PWM inverter with parameter estimation using only voltage sensor”, IEEE Trans. on Power Electronics, vol. 3, No. 2, pp. 118 - 125, Apr. 1988.
[24]S. L. Jung, H. S. Huang, M. Y. Chang and Y. Y. Tzou, “DSP-based multiple-loop control strategy for single-phase inverters used in AC power sources”, Annual IEEE Specialists Conference on Power Electronics, vol. 1, pp. 706 - 712, Jun. 1997.
[25]K. M. Tao, R. L. Kosut and G. Aral, “Learning feedforward control”, American Control Conference, vol. 3, pp. 2575 - 2579, Jun. 1994.
[26]H. S. Ahn, Y. Q. Chen and K. L. Moore, “Iterative learning control: brief survey and categorization”, IEEE Trans. on Systems, vol. 37, No. 6, pp. 1099 - 1121, Nov. 2007.
[27]S. L. Jung and Y. Y. Tzou, “Discrete sliding-mode control of a PWM inverter for sinusoidal output waveform synthesis with optimal sliding curve”, IEEE Trans. on Power Electronics, vol. 11, No. 4, pp. 567 - 577, Jul. 1996.
[28]J. J. E. Slotine and W. Lin, “Applied nonlinear control”, pp. 315 - 323, 1991 Prentice-Hall, Inc..
[29]T. F. Wu, C. H. Chang, L. C. Lin and G. R. Yu, “DC-bus voltage control with a three-phase bidirectional inverter for dc distribution systems”, IEEE Trans. on Power Electronics, vol. 28, No. 4, pp. 1890 - 1899, Apr. 2013.
[30]Renesas Electronics, “RX62T/62G Group Datasheet “, Dec. 2013.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *