帳號:guest(3.145.12.5)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):簡盧世
作者(外文):Jian, Lu Shih
論文名稱(中文):用於以風力開關式磁阻發電機為主直流微電網插入式能源支撐系統之開發
論文名稱(外文):DEVELOPMENT OF PLUG-IN ENERGY SUPPORT SYSTEMS FOR WIND SRG-BASED DC MICRO-GRID
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang Ming
口試委員(中文):陳景然
劉添華
曾萬存
口試委員(外文):Chen, Ching Jan
Liu, Tian Hua
Tseng, Wan Tsun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:103061513
出版年(民國):105
畢業學年度:104
語文別:中文英文
論文頁數:135
中文關鍵詞:微電網風力發電機開關式磁阻電機儲能系統飛輪蓄電池超電容交錯式負載變頻器插入式能源收集機構
外文關鍵詞:Micro-gridwind generatorswitched-reluctance machineenergy storage systemflywheelbatterysuper-capacitorinterleavingload inverterplug-in energy harvester
相關次數:
  • 推薦推薦:0
  • 點閱點閱:436
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
本論文旨在從事風力開關式磁阻發電機為主直流微電網插入式能源支撐系統之開發,當風能及儲能設備能源短缺時,可從交流或直流電源獲得輔助能源支撐。首先,重現測試用風力開關式磁阻發電機為主之微電網。所具之混合式能源儲能系統含飛輪、鉛酸電池組及超電容。微電網之共同直流匯流排電壓由開關式磁阻發電機經由一交錯式昇壓直流/直流介面轉換器建立,交錯式操作有效降低直流匯流排電壓之漣波並具有故障容忍性。為方便測試,建構一三相負載變頻器,藉由空間向量弦波脈寬調變切換及動態控制,使其輸出之三相平衡電壓具良好波形及電壓調控特性。在混合式儲能系統中,超電容直並於開關式磁阻發電機之輸出,電池及開關式磁阻馬達驅動飛輪分別經由一雙向昇降/昇降壓直流/直流介面轉換器及一單臂雙向昇/降壓直流/直流介面轉換器介接至共同直流匯流排。電池與飛輪以及微電網總體可由所開發之能源支撐機構獲得能源輔助支撐。
所建構單相交流源插入式能源支撐系統具兩種電路架構:(1) 單相切換式整流器為主之能源支撐系統:外加一昇壓切換式整流器,由市電建立微電網之直流鏈電壓(400VDC);(2) 單相降壓切換式整流器及昇/降壓切換式整流器為主之能源支撐系統:除全橋整流器及交流側低通濾波器為外加外,其餘均利用固有之電力電路元件,分別對飛輪及電池從事輔助充電。至於三相交流源插入式能源支撐系統,建立一三相維也納昇壓切換式整流器,由適當安排及控制,使微電網總體可從三相交流源、單相交流源或直流電源獲得輔助能源支撐。
This thesis develops the plug-in energy support systems for a wind switched- reluctance generator (SRG) based DC micro-grid. The auxiliary energy support from the accessible AC or DC sources can be achieved as the energy deficiencies of wind source and storage devices occur. First, an available wind SRG based micro-grid is redesigned and employed as the studied platform. It is equipped with a hybrid energy storage system consisting of a flywheel, a lead-acid battery bank and a super-capacitor bank. The common DC bus voltage of micro-grid is established by the SRG via an interleaved boost DC/DC converter. Thanks to the interleaving approach, the well-regulated DC bus voltage with lower ripple and fault-tolerance is preserved. For performing experimental test, a three-phase load inverter is established. The balanced three-phase voltages with good waveform and dynamic response characteristics are obtained by applying the designed space-vector PWM switching and dynamic control schemes. In the hybrid energy storage system, while the super-capacitor bank is directly connected across the SRG output, the battery and the switched-reluctance motor (SRM) driven flywheel are respectively interfaced to the common DC bus via a bilateral buck/boost-buck/boost DC/DC converter and an one-leg bilateral buck-boost DC/DC converter.
In the developed single-phase AC source plug-in energy support systems (ESSs), two schematics are proposed: (i) Single-phase SMR based ESS: an external SMR is added to excite the 400V micro-grid bus from the mains; and (ii) Single-phase buck and buck-boost SMR based ESSs: only a full-bridge diode rectifier and an AC-side low-pass filter are externally added. A buck SMR or a buck-boost SMR is formed using the embedded power devices to dedicatedly charge the flywheel and battery bank. As to the three-phase AC source plug-in ESS, an extra three-phase Vienna SMR is equipped. Through proper arrangement and control, the micro-grid can be supported auxiliary energy from three-phase AC, single-phase AC or DC source.
ABSTRACT i
ACKNOWLEDGEMENTS ii
LIST OF CONTENTS iii
LIST OF FIGURES vi
LIST OF TABLES xiv
LIST OF SYMBOLS xv
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 OVERVIEW ON SOME CONSTITUTED COMPONENTS
OF DC MICRO-GRID 7
2.1 Introduction 7
2.2 DC Micro-grid 7
2.3 Wind Generator System 8
2.4 Switched-reluctance Machines 10
A. Motor Structure 10
B. Governing Equations 11
C. Dynamic Modeling 13
D. SRM Converters 14
2.5 Some Key Issues of a SRM and a SRG 15
2.6 Some Energy Storage Devices 16
A. Battery 16
B. Flywheel 16
C. Super-capacitor 17
2.7 Interface DC-DC Converters 19
2.8 Switch-mode Rectifiers 20
A. Single-phase SMRs 20
B. Three-phase SMRs 22
2.9 Overview of PWM Inverters 23
A. Single-phase SPWM Inverters 23
B. Three-phase SPWM Inverters 25
C. Zero Sequence Signal Injection
for SPWM Inverter 27
CHAPTER 3 A SRG-BASED DC MICRO-GRID WITH BATTERY/
FLYWHEEL/SC HYBRID ENERGY STORAGE 28
3.1 Introduction 28
3.2 Wind SRG System 29
A. Switched-reluctance Generator 31
B. SRG Interleaved Boost DC/DC
Interface Converter 33
C. Dump Load 38
3.3 SRM-driven Flywheel Energy Storage System 38
A. Power Circuits 38
B. Commutation Scheme 40
C. Control Schemes 40
3.4 Battery Energy Storage System 41
A. Power Circuit 41
B. Control Schemes 41
3.5 Experimental Performance Evaluation 42
A. Wind SRG 42
B. DC Micro-grid Established by SRG via
Interleaved Boost DC/DC Converter
without SC 47
C. DC Micro-grid Established by SRG via
Interleaved Boost DC/DC Converter
with SC 51
D. Dump Load 53
E. SRM-driven Flywheel Energy Storage System 53
F. Battery Energy Storage System 57
CHAPTER 4 FLYWHEEL/BATTERY HYBRID ENERGY STORAGE SYSTEM
POWERED BY PLUG-IN SINGLE-PHASE SMR 59
4.1 Introduction 59
4.2 SRM-driven Flywheel with Plug-in Interleaved Buck
SMR Front-end 59
A. Power Circuit 60
B. Control Schemes 64
4.3 Measured Results of the Established Plug-in
Interleaved Buck SMR fed SRM-driven Flywheel 66
4.4 Battery Auxiliary Charging with Plug-in Buck-boost
SMR under CCM 69
A. Power Circuit 70
B. Control Schemes 74
4.5 Measured Results of the Plug-in Buck-boost SMR
based Battery Charger under CCM 75
A. Resistive Load 75
B. Battery Charging 77
4.6 Battery Auxiliary Charging with Plug-in Buck-boost
SMR under DCM 78
A. Power Circuit 78
B. Voltage Controller 81
4.7 Measured Results of the Plug-in Buck-boost SMR
based Battery Charger under DCM 82
CHAPTER 5 MICRO-GRID POWERED BY PLUG-IN SINGLE-PHASE
AND THREE-PHASE SMRs 85
5.1 Introduction 85
5.2 Single-phase Boost SMR 85
A. Power Circuit 87
B. Control Schemes 88
5.3 Three-phase Vienna Boost SMR 90
A. Power Circuit 91
B. Control Schemes 98
C. Simulation Results 99
5.4 Three-phase PWM Load Inverter 100
A. Power Circuit 100
B. Control Schemes 102
5.5 Evaluation of the Plug-in Mechanism for Powering
Resistive Load, Load Inverter, Charging Battery and
Driving Flywheel 104
A. Single-phase Boost SMR 104
B. Three-phase Vienna SMR 117
CHAPTER6 CONCLUSIONS 123
REFERENCES 125
APPENDIX 135

A. Micro-grid and Distributed Power Systems
[1] N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay, “Microgrids,” IEEE Power Energy, vol. 5, no. 4, pp. 78-94, 2007.
[2] D. Boroyevich, I. Cvetkovic, D. Dong, R. Burgos, F. Wang, and F. C. Lee, “Future electronic power distribution systems a contemplative view,” in Proc. IEEE OPTIM, 2010, pp.1369-1380.
[3] R. Majumder, G. Ledwich, A. Ghosh, S. Chakrabarti, and F. Zare, “Droop control of converter-interfaced microsources in rural distributed generation,” IEEE Trans. Power Del., vol. 25, no. 4, pp. 2768-2778, 2010.
[4] S. W. Mohod and M. V. Aware, “Micro wind power generator with battery energy storage for critical load,” IEEE Syst. J., vol. 6, no. 1, pp. 118-125, 2012.
[5] M. A. Saleh and M. N. Eskander, “Performance of wind driven generators under wind speed variation and grid faults,” in Proc. IEEE PEDS, 2013, pp. 957-961.
[6] P. C. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, “Autonomous operation of hybrid microgrid with AC and DC subgrids,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2214-2223, 2013.
[7] H. Valderrama-Blavi, J. M. Bosque, F. Guinjoan, L. Marroyo, and L. Martinez- Salamero, “Power adaptor device for domestic DC microgrids based on commercial MPPT inverters,” IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 1191-1203, 2013.
[8] T. Dragicevic, J. M. Guerrero, J. C. Vasquez, and D. Skrlec, “Supervisory control of an adaptive-droop regulated DC microgrid with battery management capability,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 695-706, 2014.
[9] L. Xiaonan, S. Kai, J. M. Guerrero, J. C. Vasquez, and H. Lipei, “State-of-charge balance using adaptive droop control for distributed energy storage systems in DC microgrid applications,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2804-2815, 2014.
[10] K. W. Hu and C. M. Liaw, “Development of a wind interior permanent-magnet synchronous generator-based microgrid and its operation control,” IEEE Power Energy, vol. 30, no. 9, pp. 4973-4985, 2015.
[11] K. W. Hu and C. M. Liaw, “Incorporated operation control of DC microgrid and electric vehicle,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 202-215, 2016.
[12] F. R. Islam, H. R. Pota, and M. S. Ali, “V2G technology for designing active filter system to improve wind power quality,” in Proc. IEEE AUPEC, 2011, pp. 1-6.

B. Switched-reluctance Machines
Switched-reluctance Motors
[13] P. C. Sen, Principles of Electric Machines and Power Electronics, 2nd ed., New Jersey: John Wiley & Sons, Inc., 1997.
[14] R. Krishnan, Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and Applications, New York: CRC Press, 2001.
[15] K. M. Rahman, B. Fahimi, G. Suresh, A. V. Rajarathnam, and M. Ehsani, “Advantages of switched reluctance motor applications to EV and HEV design and control issues,” IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 111-121, 2000.
[16] K. Kiyota and A. Chiba, “Design of switched reluctance motor competitive to 60-kW IPMSM in third-generation hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2303-2309, 2012.
[17] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
[18] B. Bilgin, A. Emadi, and M. Krishnamurthy, “Design considerations for switched reluctance machines with a higher number of rotor poles,” IEEE Trans. Ind. Electron., vol. 59, no. 10, pp. 3745-3756, 2012.
[19] S. E. Schulz and K. M. Rahman, “High performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
[20] R. Gobbi and K. Ramar, “Optimisation techniques for a hysteresis current controller to minimise torque ripple in switched reluctance motors,” IET Proc. Elect. Power Appl., vol. 3, no. 5, pp. 453-460, 2009.
[21] K. Wong, “Energy-efficient peak-current state-machine control with a peak power mode,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 489-498, 2009.
[22] Z. Lin, D. Reay, B. Williams, and X. He, “High-performance current control for switched reluctance motors based on on-line estimated parameters,” IEEE Trans. Elect. Power Appl., vol. 4, no. 1, pp. 67-74, 2010.
[23] Y. Kuwahara, H. Ono, T. Kosaka, N. Matsui, and H. Shimada, “Precise pulsewise current drive of SRM under PWM control,” in Proc. IEEE PEDS, 2013, pp. 1049-1054.
[24] R. Mikail, I. Husain, Y. Sozer, M. S. Islam, and T. Sebastian, “A fixed switching frequency predictive current control method for switched reluctance machines,” IEEE Trans. Ind. Appl., vol. 50, no. 6, pp. 3717-2726, 2014.
[25] F. Peng and A. Emadi, “A digital PWM current controller for switched reluctance motor drives,” in Proc. IEEE ITEC, 2014, pp. 1-6.
[26] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Appl., vol. 44, no. 6, pp. 800-808, 1997.
[27] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor drive” IEE Proc. Elect. Power Appl., vol. 48, no.4, pp. 345-353, 2001.
[28] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst. vol. 38, no. 3, pp. 955-968, 2002.
[29] S. Rafael, A. J. Pires, and P. J. C. Branco, “An adaptive learning rate approach for an on-line neuro-fuzzy speed controller applied to a switched reluctance machine,” in Proc. IEEE ISIE, 2005, vol. 3, pp. 941-944.
[30] L. L. N. dos Reis, F. Sobreira, A. R. R. Coelho, O. M. Almeida, J. C. T. Campos, and S. Daher, “Identification and adaptive speed control for switched reluctance motor using DSP,” in Proc. IEEE COBEP, 2009, vol. 3, pp. 836-841.
[31] H. Hannoun, M. Hilairet, and C. Marchand, “Design of an SRM speed control strategy for a wide range of operating speeds,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 2911-2921, 2010.
[32] J. J. Gribble, P. C. Kjaer, and T. J. E. Miller, “Optimal commutation in average torque control of switched reluctance motors,” IEE Proc. Elect. Power Applicat., vol. 146, no. 1, pp. 2-10, 1999.
[33] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
[34] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[35] D. E. Cameron, J. H. Lang, and S. D. Umans, “The origin and reluctance of acoustic noise in doubly salient variable-reluctance motors,” IEEE Trans. Ind. Appl., vol. 28, no. 1, pp. 1250-1255, 1992.
[36] J. Y. Chai, Y. W. Lin, and C. M. Liaw, “Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor,” IEE Proc. Elect. Power Applicat., vol. 153, no. 3, pp. 348-360, 2006.
[37] J. Y. Chai and C. M. Liaw, “On the reduction of speed ripple and vibration for switched reluctance motor drive via intelligent current profiling” IEE Proc. Elect. Power Applicat., vol. 4, no. 5, pp. 380-396, 2010.
[38] V. P. Vujičić, “Minimization of torque ripple and copper losses in switched reluctance drive,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 388-399, 2012.
[39] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009.
[40] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IEE Proc. Elect. Power Applicat., vol. 147, no. 5, pp. 337-344, 2000.
Switched-reluctance Generators
[41] M. Menne, R. B. Inderka, and R. W. De Doncker, “Critical states in generating mode of switched reluctance machines,” in Proc. IEEE PESC, 2000, vol. 3, pp. 1544-1550.
[42] D. A. Torrey, “Switched reluctance generators and their control,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 3-14, 2002.
[43] N. Radimov, N. Ben-Hail, and R. Rabinovici, “Switched reluctance machines as three-phase AC Autonomous generator,” IEEE Trans. Magnetics., vol. 42 no. 11, pp. 28, 2006.
[44] R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher, and P. Wheeler, “Control of a switched reluctance generator for variable-speed wind energy applications,” IEEE Trans. Energy Convers., vol. 20, no. 4, pp. 781-791, 2005.
[45] T. Yamaguchi, N. Yamamura, and M. Ishda, “Study for small size wind power generating system using switched reluctance generator,” in Proc. IEEE ICIT, 2006, pp. 1510-1515.
[46] Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme for switched reluctance generator,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 445-454, 2008.
[47] B. Fahimi, A. Emadi, and R. B. Sepe Jr, “A switched reluctance machine-based starter/alternator for more electric cars,” IEEE Trans. Energy Convers., vol. 19, no. 1, pp. 116-124, 2004.
[48] N. Schofield and S. Long, “Generator operation of a switched reluctance starter/generator at extended speeds,” IEEE Trans. Veh. Technol., vol. 58, no. 1, pp. 48-56, 2009.
[49] A. W. F. V. Silveira, D. A. Andrade, L. C. Gomes, A. Fleury, and C. A. Bissochi, “DSP based SRG load voltage control,” in Proc. IEEE VPPC, 2010, pp. 1-5
[50] C. Mademlis and I. Kioskeridis, “Optimizing performance in current-controlled switched reluctance generators,” IEEE Trans. Energy Convers., vol. 20, no. 3, pp. 556-565, 2005.
[51] W. Fernando, M. Barnes, and O. Marjanovic, “Excitation control and voltage regulation of switched reluctance generators above base speed operation,” in Proc. IEEE VPPC, 2011, pp. 1-6.
[52] E. Afjei, A. Siadatan, and M. Asgar, “Comparison between two field-assisted switched reluctance generators suitable for wind turbine applications,” in Proc. IEEE ICCEP, 2011, pp. 272-276.
[53] S. Narla, Y. Sozer, and I. Husain, “Switched reluctance generator controls for optimal power generation and battery charging,” in Proc. IEEE ECCE, 2011, pp. 3575-3581.
[54] V. Nasirian, S. Kaboli, and A. Davoudi, “Output power maximization and optimal symmetric freewheeling excitation for switched reluctance generators,” IEEE Trans. Ind. Appl., vol. 49, no. 3, pp. 1031-1042, 2013.
[55] C. Sikder, I. Husain, and Y. Sozer, “Switched reluctance generator control for optimal power generation with current regulation,” IEEE Trans. Ind. Appl., vol. 50, no. 1, pp. 307-316, 2014.
[56] H. Yahia, N. Liouane, and R. Dhifaoui, “Differential evolution method-based output power optimization of switched reluctance generator for wind turbine applications,” IET Renew. Power Gen., vol. 8, no.7 , pp. 795-806, 2014.
Converters for Switched-reluctance Machines
[57] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1049, 1991.
[58] S. Mir, I. Husain, and M. E. Elbuluk, “Energy-efficient C-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, no. 5, pp. 912-921, 1997.
[59] M. Barnes and C. Pollock, “Power electronic converters for switched reluctance drives,” IEEE Trans. Power Electron., vol. 13, no. 6, pp. 1100-1111, 1998.
[60] V. V. Deshpande and Y. L. Jun, “New converter configurations for switched reluctance motors wherein some windings operate on recovered energy,” IEEE Trans. Ind. Appl., vol. 38, no. 6, pp. 1558-1565, 2002.
[61] A. K. Jain and N. Mohan, “SRM power converter for operation with high de- magnetization voltage,” IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 1224-1231, 2005.

C. Energy Storage Systems
[62] J. P. Barton and D. G. Infield, “Energy storage and its use with intermittent renewable energy,” IEEE Trans. Energy Convers., vol. 19, no. 2, pp. 441-448, 2004.
[63] A. Kusko and J. DeDad, “Stored energy- short-term and long-term energy storage methods,” IEEE Trans. Ind. Appl. Mag., vol. 13, no. 4, pp. 66-72, 2007.
[64] J. Cao and A. Emadi, “Batteries needs electronics,” IEEE. Ind. Electron. Mag., vol. 5, no. 1, pp. 27-35, 2011.
[65] A. R. Sparacino, G. F. Reed, R. J. Kerestes, B. M. Grainger, and Z. T. Smith, “Survey of battery energy storage systems and modeling techniques,” IEEE Power Eng. Soc. General Meeting, pp. 1-8, July 2012.
[66] M. Ortuzar, J. Moreno, and J. Dixon, “Ultracapacitor-based auxiliary energy system for an electric vehicle: implementation and evaluation,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2147-2156, 2007.
[67] P. Thounthong, S. Rael, and B. Davat, “Analysis of supercapacitor as second source based on fuel cell power generation,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 247-255, 2009.
[68] J. L. da Silva Neto, L. G. B. Rolim, and G. G. Sotelo, “Control of power circuit interface of a flywheel-based energy system,” in Proc. IEEE ISIE, 2003, vol. 2 pp. 962-967.
[69] G. O. Cimuca, C. Saudemont, B. Robyns, and M. M. Radulescu, “Control and performance evaluation of a flywheel energy-storage system associated to a variable-speed wind generator,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1074-1085, 2006.
[70] R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher, and P. Wheeler, “Power smoothing using a flywheel driven by a switched reluctance machine,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1086-1093, 2006.
[71] J. L. S. Neto, R. De Andrade, L. G. B. Rolim, A. C. Ferreira, G. G. Sotelo, and W. Suemitsu, “Experimental validation of a dynamic model of a SRM used in superconducting bearing flywheel energy storage system,” in Proc. IEEE ISIE, 2006, pp. 2492-2497.
[72] A. Rajapakshe, U. K. Madawala, and D. Muthumani, “A model for a fly-wheel driven by a grid connected switch reluctance machine,” in Proc. IEEE ICSET, 2008, pp. 1025-1030.
[73] R. Pena-Alzola, R. Sebastian, J. Quesada, and A. Colmenar, “Review of flywheel based energy storage systems,” in Proc. IEEE Power Eng., 2011, pp. 1-6.
[74] G. O. Suvire, M. G. Molina, and P. E. Mercado, “Improving the integration of wind power generation into AC microgrids using flywheel energy storage,” IEEE Trans. Smart Grid, vol. 3, no.4, pp. 1945-1954, 2012.
[75] R. Arghandeh, M. Pipattanasomporn, and S. Rahman, “Flywheel energy storage systems for ride-through applications in a facility microgrid,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1955-1962, 2012.
[76] J. Sun, Z. Kuang, S. Wang, and Y. Chen, “Efficiency optimal control of switched reluctance machine over wide speed range applied to flywheel energy storage system,” in Proc. IEEE EML, 2012, pp.1-6.
[77] C. S. Hearn, M. C. Lewis, S. B. Pratap, R. E. Hebner, F. M. Uriarte, C. Dongmei, and R.G. Longoria, “Utilization of optimal control law to size grid-level flywheel energy storage,” IEEE Trans. Sustain. Eng., vol. 4, no. 3, pp. 611-618, 2013.
[78] J.-I. Itoh, K. Tanaka, S. Matsuo, and N. Yamada, “Experimental verification of flywheel power leveling system oriented to low cost and general purpose use,” in Proc. IEEE ECCE, 2013, pp.35-42.
[79] S. Gayathri Nair and N. Senroy, “Wind turbine with flywheel for improved power smoothening and LVRT,” in Proc. IEEE PES, 2013, pp.1-5.
[80] M. Chudy, L. Herbst, and J. Lalk, “Wind farms associated with flywheel energy storage plants,” in Proc. IEEE PES/ ISGT-Europe, 2014, pp. 1-6.
[81] E. K. Hussain, D. Benchebra, K. Atallah, H. S. Ooi, M. Burke, and A. Goodwin, “A flywheel energy storage system for an isolated micro-grid,” in Proc. IET RPG, 2014, pp. 1-6.
[82] F. Diaz-Gonzalez, F.D. Bianchi, A. Sumper, and O. Gomis-Bellmunt, “Control of a flywheel energy storage system for power smoothing in wind power plants,” IEEE Trans. Energy Convers., vol. 29, no. 1, pp. 204-214, 2014.
[83] L. Zhihao, O. Onar, A. Khaligh, and E. Schaltz, “Design and control of a multiple input DC/DC converter for battery/ultra-capacitor based electric vehicle power system,” in Proc. IEEE APEC, pp. 591-596, 2009.
[84] K. W. Hu and C. M. Liaw, “On the flywheel/battery hybrid energy storage system for DC microgrid, ” in Proc. IEEE IFEEC, 2013, pp. 119-125.
[85] N. Mendis, K. M. Muttaqi, and S. Perera, “Management of battery-supercapacitor hybrid energy storage and synchronous condenser for isolated operation of PMSG based variable-speed wind turbine generating systems,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 944-953, 2014.
[86] K. W. Hu, P. H. Yi, and C. M. Liaw, “An EV SRM drive powered by battery/ supercapacitor with G2V and V2H/V2G capabilities,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4714-4727, Aug. 2015.

D. Interface Power Electronic Converters
[87] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd ed., New Jersey: John Wiley & Sons, Inc., 2003.
[88] H. C. Chang and C. M. Liaw, “On the front-end converter and its control for a battery powered switched-reluctance motor drive,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 2143-2156, 2008.
[89] L. Palma and P. N. Enjeti, “A modular fuel cell, modular DC-DC converter concept for high performance and enhance reliability,” IEEE Trans. Power Electron., vol. 24, no. 6, pp. 1437-1443, 2009.
[90] N. M. L. Tan, T. Abe, and H. Akagi, “Design and performance of a bidirectional isolated DC-DC converter for a battery energy storage system,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1237-1248, 2011.
[91] A. A. Fardoun, E. H. Ismail, A. J. Sabzali, and M. A. Al-Saffar, “Bi-directional converter with low input/output current ripple for renewable energy applications,” in Proc. ECCE, 2011, pp. 3322-3329.
[92] J. C. Wang, “A wind switched-reluctance generator based DC micro-grid with interleaving interface converter and multiple energy storage devices,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2013.
[93] T. S. Lin, “A wind switched-reluctance generator based DC micro-grid with interleaving interface converter and multiple energy storage devices,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2014.
[94] Y. C. Chen, “A wind switched reluctance generator fed micro-grid with hybrid storage and plug-in energy harvesting mechanism,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2015.

E. PWM Inverters
[95] J. M. D. Murphy and F. G. Turnbull, Power Electronic Control of AC Motors, New York: Pergamon Press, 1988.
[96] B. K. Bose, Modern Power Electronic and AC Drive, New Jersey: Prentice Hall, 2002.
[97] A. M. Hava, R. J. Kerkman, and T. A. Lipo, “Simple analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 49-61, 1999.
[98] M. Castilla, J. Miret, J. Matas, L. G. de Vicuña, and J. M. Guerrero, “Control design guidelines for single-phase grid-connected photovoltaic inverters with damped resonant harmonic compensators,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4492-4500, 2009.
[99] K. Selvajyothi and P. A. Janakiraman, “Reduction of voltage harmonics in single phase inverters using composite observers,” IEEE Trans. Power Del., vol. 25, no. 2, pp. 1045-1057, 2010.
[100] Y. W. Li, D. M. Vilathgamuwa, and P. C. Loh, “A grid-interfacing power quality compensator for three-phase three-wire microgrid applications,” IEEE Trans. Power Electron., vol. 21, no. 4, pp. 1021-1031, 2006.
[101] B. Sahan, S. V. Araujo, C. Noding, and P. Zacharias, “Comparative evaluation of three-phase current source inverters for grid interfacing of distributed and renewable energy systems,” IEEE Trans. Power Electron., vol. 26, no. 8, pp. 2304-2318, 2011.
[102] R. Carballo, R. Nunez, V. Kurtz, and F. Botteron, “Design and implementation of a three-phase DC-AC converter for microgrids based on renewable energy sources,” IEEE Trans. Latin Ameri., vol. 11, no. 1, pp. 112-118, 2013.
[103] G. G. Pozzebon, A. F. Q. Goncalves, G. G. Pena, N. E. M. Mocambique, and R. Q. Mavhado, “Operation of a three-phase power converter connected to a distribution system,” IEEE Trans. Ind. Electron., vol. 60, no. 5, pp. 1810-1818, 2013.
[104] S. Dasgupta, S. N. Mohan, S. K. Sahoo, and S. K. Panda, “Evaluation of current reference generation methods for a three-phase inverter interfacing renewable energy sources to generalized micro-grid,” in Proc. IEEE PEDS, 2011, pp.316-321.
[105] J. M. Espí, J. Castelló, R. García-Gil, G. Garcerá, and E. Figueres, “An adaptive robust predictive current control for three-phase grid-connected inverters,” IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3537-3546, 2011.
[106] D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice, New Jersey: Wiley-IEEE Press, 2003.
[107] A. R. Munoz and T. A. Lipo, “On-line dead-time compensation technique for open-loop PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 683-689, 1999.
[108] J. Kim, J. Choi, and H. Hong, “Output LC filter design of voltage source inverter considering the performance of controller,” in Proc. IEEE ICPST, 2000, vol. 3, pp. 1659-1664.
[109] S. H. Hwang and J. M. Kim, “Dead time compensation method for voltage-fed PWM inverter,” IEEE Trans. Energy Convers., vol. 25, no. 1, pp. 1-10, 2010.
[110] K. W. Hu and C. M. Liaw, “On an auxiliary power unit with emergency AC power output and its robust controls,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4387-4402, 2013.

F. Switched-mode Rectifiers
Single-phase SMRs
[111] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality AC-DC converter,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
[112] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[113] L. Solero, V. Serrao, M. Montuoro, and A. Romanelli, “Low THD variable load buck PFC converter,” in Proc. PESC, 2008, pp. 906-912.
[114] H. Laszlo, G. Liu, and M. J. Milan, “Design-oriented analysis and performance evaluation of buck PFC front-end,” in Proc. APEC, 2009, pp. 1170-1176.
[115] K. Matsui, I. Yamamoto, T. Kishi, M. Hasegawa, H. Mori, and F. Ueda “A comparison of various buck-boost converters and their application to PFC,” in Proc. IEEE IECON, 2002, vol. 1, pp. 30-36.
[116] A. Abouloifa and F. Giri, “Nonlinear control of buck-boost AC/DC converters: output voltage regulation & power factor correction,” in Proc. IEEE ACC, 2004, vol. 1, pp. 168-173.
[117] M. S. Agamy and P. K. Jain, “A robust controller for a class of front-end buck-boost high power factor rectifiers,” in Proc. IEEE PESC, 2005, pp. 1998-2004.
[118] G. Moschopoulos and Z. Yongqiang, “Buck-boost type AC-DC single-stage converters,” in Proc. IEEE ISIE, 2006, vol. 2, pp. 1123-1128.
[119] E. H. Ismail, A. J. Sabzali, and M. A. Al-Saffar, “Buck-boost-type unity power factor rectifier with extended voltage conversion ratio,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1123-1132, 2008.
[120] M. A. Al-Saffar, E. H. Ismail, and A. J. Sabzali, “Integrated buck-boost-quadratic buck PFC rectifier for universal input applications,” IEEE Trans. Ind. Electron., vol. 24, no. 12, pp. 2886-2896, 2009.
Three-phase SMRs
[121] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of three-phase improved power quality AC-DC converter,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[122] T. Friedli and J. W. Kolar, “The essence of three-phase PFC rectifier systems- Part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
[123] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems- Part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014.
[124] J. W. Kolar, U. Drofenik, and F. C. Zach, “Current handling capability of the neutral point of a three-phase/switch/level boost-type PWM (VIENNA) rectifier,” in Proc. IEEE PESC, 1996, vol. 2, pp. 1329-1336.
[125] H. Ertl, J. W. Kolar, and F. C. Zach, “Design and experimental investigation of a three-phase high power density high efficiency unity power factor PWM (VIENNA) rectifier employing a novel integrated power semiconductor module,” in Proc. IEEE APEC, 1996, pp. 514-523.
[126] S. Gadelovitz and A. Kuperman, “Modeling and classical control of unidirectional Vienna rectifiers,” in Proc. IEEE PQ, 2012, pp. 1-4.
[127] R. Tonkski, L. A. C. Lopes, and F. Dos Reis, “A single-switch three-phase boost rectifier to reduce the generator losses in wind energy conversion systems,” in Proc. IEEE EPEC, 2009, pp. 1-8.
[128] J. Y. Chai, Y. C. Chang, and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
[129] J. Hui, A. Bakhshai, and P. K. Jain, “Control and modeling of a wind energy system with a three-phase DCM boost converter and a sensorless maximum point power tracking method,” in Proc. IEEE/PES Transm. Distrib. Conf. Expo., 2012, pp. 1-7.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *