帳號:guest(3.149.255.208)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):何國銓
作者(外文):He, Guo Cyuan
論文名稱(中文):具電網至車輛/車輛至電網及插入式能源收集功能之蓄電池/超電容供電電動車開關式磁阻馬達驅動系統
論文名稱(外文):ON A BATTERY/SUPERCAPACITOR POWERED EV SRM DRIVE HAVING G2V/V2G AND PLUG-IN ENERGY HARVESTING CAPABILITIES
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang Ming
口試委員(中文):曾萬存
劉添華
陳景然
口試委員(外文):Tseng, Wan Tsun
Liu, Tian Hua
Chen, Ching Jan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:103061510
出版年(民國):105
畢業學年度:104
語文別:英文中文
論文頁數:172
中文關鍵詞:電動車開關式磁阻馬達蓄電池超級電容直流/直流轉換器切換式整流器維也納切換式整流器單相三線式變頻器再生煞車電網至車輛車輛至家庭車輛至電網
外文關鍵詞:electric vehicleswitched-reluctance motorbatterysupercapacitorDC/DC converterswitch-mode rectifierVienna switch-mode rectifiersingle-phase three-wire inverterregenerative brakinggrid-to-vehiclevehicle-to-homevehicle-to-grid
相關次數:
  • 推薦推薦:0
  • 點閱點閱:341
  • 評分評分:*****
  • 下載下載:33
  • 收藏收藏:0
本論文旨在研製一具電網至車輛、車輛至家庭、車輛至電網及插入式能源收集功能之蓄電池/超電容供電電動車開關式磁阻馬達驅動系統,所有輔助功能係利用馬達驅動系統中既有元件構成之轉換器予以實現。
所建開關式磁阻馬達驅動系統由蓄電池經單向交錯式升降壓直流/直流介面轉換器供電,藉由一些關鍵事務之處理以得良好之驅控性能,包含換相時刻之設定與移位、電流與速度控制之改善、及直流鏈電壓之調整等。有賴於所研製之介面轉換器,直流鏈電壓可靈活地被調整成高於或低於蓄電池電壓。且透過適當之換相設定,成功地實現再生剎車,當再生煞車失效時,可由動態煞車防止直流鏈過壓。所具良好驅動性能包含加/減速、正反轉和再生煞車。為增加電動車之總體儲能利用率,蓄電池輔加以功率型超級電容,超級電容經由雙向升降壓直流/直流介面轉換器介接至直流鏈。透過適當之協調控制,車輛短時間及頻繁地之加減速能量轉換,可由超級電容迅速處理,有助於蓄電池壽命之延長。
於電動車閒置時,一雙向單相三線式變頻器利用馬達驅動系統之固有元件構成,可實現電網至車輛、車輛至家庭及車輛至電網等操作。於電網至車輛充電模式,電動車蓄電池可施行具功率因數校正之充電。而在車輛至家庭及車輛至電網之放電模式,由蓄電池產出之110V/220V 60Hz交流電,可供家用,或將多餘之電能送回電網。在電網連接情況下,負載之虛功率及諧波功率均由蓄電池供給。最後,外加之車載三相維也納切換式整流器,可從事三相電源入電之快速充電,而可插入之電源含三相交流電源、單相交流電源或直流電源。

This thesis presents the establishment of a battery/super-capacitor powered electric vehicle (EV) switched-reluctance motor (SRM) drive with grid-to-vehicle (G2V), vehicle-to-home (V2H), vehicle-to-grid (V2G) and plug-in energy harvesting functions. All these auxiliary functions are conducted with the converters formed using the SRM drive embedded components.
The developed SRM drive is powered from the battery via an interleaved unidirectional buck-boost DC/DC converter. Good driving performances are achieved via properly treating some affairs, including commutation instant setting and shifting, improved current and speed controls, DC-link voltage adjustment, etc. Thanks to the developed interface converter, the DC-link voltage can be flexibly controlled to below and above the battery voltage. The successful generative braking is accomplished via proper commutation setting. A dynamic brake leg is also equipped to avoid the DC-link overvoltage as the regenerative braking is failed. Satisfactory driving performances possessed by the developed SRM drive include acceleration/deceleration, reversible and regenerative braking operations. To obtain better overall storage utilization of an EV, the battery is augmented with the power type super-capacitor (SC) storage. The SC is also interfaced to the DC-link via a bidirectional buck-boost/buck-boost (B-B/B-B) DC/DC converter. Through proper coordinated control arrangement, the energy conversions during intermittent and frequent short-duration acceleration/deceleration can be quickly handled by the SC. This is beneficial for increasing the battery life.
In EV idle condition, a bilateral single-phase three-wire (1P3W) inverter is constructed using the embedded motor drive power devices. The inverter can be arranged to perform G2V and V2H/V2G operations. In G2V mode, the EV battery can be charged from the mains with power factor correction. Conversely, in V2H/V2G modes, the home appliances can be powered with 110V/220V voltages from the on-board battery. Moreover the programmed power can be sent back to the utility grid. In grid-connected cases, all load reactive and harmonic powers can be compensated by the battery powered inverter. Finally, an externally added on-board three-phase Vienna SMR is established. It allows the quick on-board charging from three-phase AC mains. The possible plug-in harvested sources include three-phase AC source, single-phase AC source, or DC source.
ABSTRACT i
ACKNOWLEDGEMENTS ii
LIST OF CONTENTS iii
LIST OF FIGURES vi
LIST OF TABLES xix
LIST OF SYMBOLS xx

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 INTRODUCTORY SWITCHED-RELUCTANCE MOTORS AND
ELECTRIC VEHICLES 8

2.1 Introduction 8
2.2 Basics of Switched-Reluctance Motor Drive 8
2.3 SRM Converters 13
2.4 Possible Front-End Converters 17
2.4.1 DC/DC Front-End Converters 17
2.4.2 AC/DC Front-End Converters 17
2.4.3 Three-Phase Switch-Mode Rectifiers 19
2.5 Electric Vehicles 21
2.6 Supercapacitor and Flywheel 23
2.7 EV Emulated Load 26
2.7.1 EV Load Torque Modeling 26
2.7.2 Estimation of Parameters for the
Developed EV Load Test-Bench 28
2.7.3 Driving Characteristics of the SRM
Drive with the Developed EV Load
Test-Bench 31
2.8 G2V/V2H/V2G Operations of Electric Vehicles 31
2.9 Some Example EV Multi-Functional Converters 32
2.10 Configuration and Functions of the Developed
EV SRM Drive 36

CHAPTER 3 EV SRM DRIVE POWERED BY BATTERY/SC WITH DC/DC
BUCK-BOOST/BUCK-BOOST INTERFACE CONVERTERS 38

3.1 Introduction 38
3.2 Possible Battery/SC Interconnected
Schematics 38
3.3 Configurations of the Developed SRM Drive in
Driving Mode 40
3.4 Supercapacitor Storage System 40
3.5 Battery Storage System 48
3.6 Switched-Reluctance Motor Drive 55
3.6.1 Power Circuit 55
3.6.2 DSP-Based Digital Control Environment 60
3.6.3 Control Schemes 62
3.6.4 Measured Results 66
3.6.5 Overall Characteristics of the Developed
EV SRM Drive 80

CHAPTER 4 V2H/V2G/G2V OPERATIONS VIA BIDIRECTIONAL
SINGLE-PHASE THREE-WIRE INVERTER 91

4.1 Introduction 91
4.2 System Configurations and Functions 91
4.3 Single-Phase PWM Inverters 93
4.3.1 H-bridge SPWM Inverter 93
4.3.2 Single-Phase Three-Wire Inverters 95
4.4 V2H Operation 97
4.4.1 1P3W Inverter Power Circuit 98
4.4.2 1P3W Inverter Control Scheme 98
4.4.3 Measured Results 102
4.5 V2G Operation 107
4.5.1 Discharging Mode 107
4.5.2 Floating Mode 110
4.5.3 Measured Results 110
4.6 G2V Operation 139
4.6.1 System Configuration 139
4.6.2 Control Schemes 139
4.6.3 Measured Results in G2V Mode 140

CHAPTER 5 VIENNA SMR BASED ENERGY HARVESTING SYSTEM 143

5.1 Introduction 143
5.2 Vienna Switch-Mode Rectifier 143
5.2.1 Circuit Operation 143
5.2.2 Equivalent Circuit Analysis 147
5.2.3 Design of Power Circuit Components 148
5.2.4 Control Scheme 151
5.2.5 Simulation Results 151
5.2.6 Measured Results 153

CHAPTER 6 CONCLUSIONS 156

REFERENCES 158

A. Renewable Energy and Electric Vehicles
[1] D. Boroyevich, I. Cvetkovic, D. Dong, R. Burgos, F. Wang, and F. Lee, “Future electronic power distribution systems a contemplative view,” in Proc. IEEE OPTIM, 2010, pp. 1369-1380.
[2] G. Wu, S. Kodama, Y. Ono, and Y. Monma, “A hybrid microgrid system including renewable power generations and energy storages for supplying both the DC and AC loads,” in Proc. IEEE ICRERA, 2012, pp. 1-5.
[3] I. Strnad and D. Skrlec, “An approach to the optimal operation of the microgrid with renewable energy sources and energy storage systems,” in Proc. IEEE EUROCON, 2013, pp. 1135-1140.
[4] F. Blaabjerg and K. Ma, “Future on power electronics for wind turbine systems,” IEEE Trans. Power Electron., vol. 1, no. 3, pp. 139-152, Sep. 2013.
[5] J. G. Matos, F. S. F. Silva, and L. A. S. Ribeiro, “Power control in AC isolated microgrids with renewable energy sources and energy storage systems,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3490-3498, 2015.
[6] S. S. Thale, R. G. Wandhare, and V. Agarwal, “A novel reconfigurable microgrid architecture with renewable energy sources and storage,” IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 1805-1816, 2015.
[7] K. W. Hu and C. M. Liaw, “Incorporated operation control of DC microgrid and electric vehicle,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 202-215, Jan. 2016.
[8] T. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids-part II: a review of power architectures, applications, and standardization issues,” IEEE Power Electron., vol. 31, no. 5, pp. 3528-3549, May 2016.
[9] M. Zeraoulia, M. E. H. Benbouzid, and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: A comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, Nov. 2006.
[10] G. Nanda and N. C. Kar, “A survey and comparison of characteristics of motor drives used in electric vehicles,” in Proc. IEEE CCECE, 2006, pp. 811-814.
[11] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for ev and HEV applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 245-254, Oct. 2015.
[12] J. Cao and A. Emadi, “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 122-132, Jan. 2012.
[13] S. S. Williamson, A. K. Rathore, F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, May 2015.
[14] S. Haghbin, S. Lundmark, M. Alaküla, and O. Carlson, “An isolated high-power integrated charger in electrified-vehicle applications,” IEEE Trans. Veh. Technol., vol. 60, no. 9, pp. 4115-4126, Nov. 2011.
[15] B. Whitaker et al., “A high-density, high-efficiency, isolated on-board vehicle battery charger utilizing silicon carbide power devices,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2606-2617, May 2013.
[16] S. Haghbin, K. Khan, S. Zhao, M. Alakula, S. Lundmark, and O. Carlson, “An integrated 20-kW motor drive and isolated battery charger for plug-in vehicles,” IEEE Trans. Power Electron., vol. 28, no. 8, pp. 4013-4029, Aug. 2013.
[17] S. Haghbin, S. Lundmark, M. Alakula, and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: review and new solution,” IEEE Trans. Electron., vol. 60, no. 2, pp. 459-473, Feb. 2013.
[18] W. Y. Choi, M. K. Yang, and H. S. Cho, “High-frequency-link soft-switching PWM DC–DC converter for EV on-board battery chargers,” IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4136-4145, Aug. 2014.
[19] V. R. Roberto, L. G. Pau, H. P. Daniel, S. Andreas, C. Ignasi, C. Z. Miguel, and V. Narcís, “Electric vehicles in power systems with distributed generation: vehicle to microgrid (V2M) project,” in Proc. IEEE EPQU, 2011, pp. 1-6.
[20] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151-2169, May 2013.
[21] J. G. Pinto, V. Monteiro, H. Gonçalves, B. Exposto, D. Pedrosa, C. Couto, and J. L. Afonso, “Bidirectional battery charger with grid-to-vehicle, vehicle-to-grid and vehicle-to-home technologies,” in Proc. IEEE IECON, 2013, pp. 5934-5939.
[22] L. Chunhua, K. T. Chau, W. Diyun, and G. Shuang, “Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies,” in Proc. IEEE, vol. 101, no. 11, pp. 2409-2427, 2013.
[23] J. G. Pinto, V. Monteiro, H. Goncalves, and J. L. Afonso, “Onboard reconfigurable battery charger for electric vehicles with traction-to-auxiliary mode,” IEEE Trans. Veh. Technol., vol. 63, no. 3, pp. 1104-1116, 2014.
[24] K. M. Rahman, B. Fahimi, G. Suresh, A. V. Rajarathnam, and M. Ehsani, “Advantages of switched reluctance motor applications to EV and HEV design and control issues,” IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 111-121, 2000.
[25] H. Gao, Y. Gao, and M. Ehsani, “A neural network based SRM drive control strategy for regenerative braking in EV and HEV,” in Proc. IEEE IEMDC, 2001, pp. 571-575.
[26] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009.
[27] N. Hoshi, A. Chiba, and M. Takemoto, “Characteristic measurements of switched reluctance motor on prototype electric vehicle,” in Proc. IEEE IEVC, 2012, pp. 1-8.
[28] N. Wada, N. Momma, and I. Miki, “Rotor position estimation method in high speed region for 3-phase SRM used in EV,” in Proc. ICEMS, 2012, pp. 1-5.
[29] P. J. Grbovic, P. Delarue, P. Le Moigne, and P. Bartholomeus, “A three-terminal ultracapacitor-based energy storage and PFC device for regenerative controlled electric drives,” IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 301-316, Jan. 2012.

B. Battery and Supercapacitor
[30] A. Affanni, A. Bellini, G. Franceschini, P. Guglielmi, and C. Tassoni, “Battery choice and management for new-generation electric vehicles,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1343-1349, 2005.
[31] M. Brandl et al., “Batteries and battery management systems for electric vehicles,” in Proc. IEEE DATE, 2012, pp. 971-976.
[32] G. Capano, M. Mozzone, and N. C. Kar, “Study of the electric power balance in a vehicle for the choice of the battery,” in Proc. IEEE ITEC, 2013, pp. 1-6.
[33] O. M. F. Camacho, P. B. Nørgård, N. Rao, and L. M. Popa, “Electrical vehicle batteries testing in a distribution network using sustainable energy,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 1033-1042, March 2014.
[34] S. Pay and Y. Baghzouz, “Effectiveness of battery-supercapacitor combination in electric vehicles,” in Proc. IEEE Power Tech Conf, Bologna, Italy, Jun. 2003, vol. 3, pp. 1-6.
[35] A. F. Burke, “Batteries and ultra-capacitors for electric, hybrid, and fuel cell vehicles,” in Proc. IEEE, vol. 95, no. 4, pp. 806-820, 2007.
[36] S. Lu, K. A. Corzine, and M. Ferdowsi, “A new battery/ultracapacitor energy storage system design and its motor drive integration for hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1516-1523, 2007.
[37] M. B. Camara, H. Galous, F. Gustin, and A. Berthon, “Design and new control of DC/DC converters to share energy between supercapacitors and batteries in hybrid vehicles,” IEEE Trans. Veh. Technol., vol.57, no. 5, pp.2721-2735, Sept. 2008.
[38] H. Yoo, S. K. Sul, Y. Park, and J. Jeong, “System integration and power-flow management for a series hybrid electric vehicle using supercapacitors and batteries,” IEEE Trans. Ind. Appl., vol. 44, no. 1, pp. 108-114, 2008.
[39] S. Lambert, V. Pickert, J. Holden, W. Li, and X. He, “Overview of supercapacitor voltage equalization circuits for an electric vehicle charging application,” in Proc. IEEE VPPC, 2010, pp. 1-7.
[40] M. B. Camara, H. Gualous, F. Gustin, and A. Berthon, “DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications- polynomial control strategy,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 587-597, 2010.
[41] M. Zandi, A. Payman, J. Martin, S. Pierfederici, B. Davat, and F. Meibody-Tabar, “Energy management of a fuel cell/supercapacitor/battery power source for electric vehicular applications,” IEEE Trans. Veh. Technol., vol. 60, no. 2, pp. 443-443, Feb. 2011.
[42] M. Neenu and S. Muthukumaran, “A battery with ultracapacitor hybrid energy storage system in electric vehicles,” in Proc. IEEE ICAESM, 2012, pp. 731-735.
[43] R. Carter, A. Cruden, and P. J. Hall, “Optimizing for efficiency or battery life in a battery/supercapacitor electric vehicle,” IEEE Trans. Veh. Technol., vol. 61, no. 4, pp. 1526-1533, May 2012.
[44] A. Ostadi and S. K. Chen, “Hybrid energy storage system (HESS) in vehicular applications: a review on interfacing battery and ultra-capacitor units,” in Proc. IEEE ITEC, 2013, pp. 1-7.
[45] A. Tina, M. B. Camara, B. Dakyo, and Y. Azzouz, “DC/DC and DC/AC converters control for hybrid electric vehicles energy management-ultracapacitors and fuel cell,” IEEE Trans. Ind. Informat., vol. 9, no. 2, pp. 686-696, 2013.
[46] K. Hata, N. Watanabe, and Kyungmin Sung, “A series or parallel changeover system using battery with EDLC for EV,” in Proc. EPE, 2013, pp. 1-10.
[47] X. Huang, H. Tosiyoki, and H. Yoichi, “System design and converter control for super capacitor and battery hybrid energy system of compact electric vehicles,” in Proc. IEEE ECCE, 2014, pp. 1-10.
[48] X. Huang, H. Tosiyoki, and H. Yoichi, “Bidirectional power flow control for battery super capacitor hybrid energy system for electric vehicles with in-wheel motors,” in Proc. EPE-PEMC, 2014, pp. 1078-1083.
[49] R. E. Araújo, R. d. Castro, C. Pinto, P. Melo, and D. Freitas, “Combined sizing and energy management in EVs with batteries and supercapacitors,” IEEE Trans. Veh. Technol., vol. 63, no. 7, pp. 3062-3076, Sept. 2014.
[50] K. W. Hu, P. H. Yi, and C. M. Liaw, “An EV SRM drive powered by battery/supercapacitor with G2V and V2H/V2G capabilities,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4714-4727, Aug. 2015.

C. Switched-Reluctance Motor Drive and Converter
[51] T. J. E. Miller, Switched reluctance motors and their control, Clarendon Press, Oxford, 1993.
[52] R. Krishnan, Switched reluctance motor drives: modeling, simulation, analysis, design, and applications, New York: CRC Press, 2001.
[53] A. V. Radun, “Design considerations for the switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 3, no. 5, pp. 1079-1087, 1995.
[54] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
[55] K. M. Rahman and S. E. Schulz, “Design of high efficiency and high density switched reluctance motor for vehicle propulsion,” in Proc. IEEE IAC, 2001, vol. 3, pp. 2104-2110.
[56] S. Kachapornkul, P. Jitkreeyarn, P. Somsiri, K. Tungpimolrut, A. Chiba, and T. Fukao, “A design of 15 kW switched reluctance motor for electric vehicle applications,” in Proc. IEEE ICEMS, 2007, pp. 1690-1693.
[57] K. Kiyota and A. Chiba, “Design of switched reluctance motor competitive to 60-kW IPMSM in third-generation hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2303-2309, 2012.
[58] T. Shibamoto, K. Nakamura, H. Goto, and O. Ichinokura, “A design of axis-gap switched reluctance motor for in-wheel direct drive EV,” in Proc. IEEE ICEM, 2012, pp. 1158-1163.
[59] B. Bilgin, A. Emadi, and M. Krishnamurthy, “Comprehensive evaluation of the dynamic performance of a 6/10 SRM for traction application in PHEV,” IEEE Trans. Ind. Electron., vol. 60, no.72, pp. 2564-2575, 2013.
[60] Y. Hu, C. Gan, W. Cao, C. Li, and S. J. Finney, “Split converter-fed SRM drive for flexible charging in EV/HEV applications,” IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6085-6095, Oct. 2015.
[61] K. Kiyota, T. Kakishima, A. Chiba, and M. A. Rahman, “Cylindrical rotor design for acoustic noise and windage loss reduction in switched reluctance motor for HEV applications,” IEEE Trans. Ind. Appl., vol. 52, no. 1, pp. 154-162, Jan. 2016.
[62] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1049, 1991.
[63] S. Mir, I. Husain, and M. E. Elbuluk, “Energy-efficient C-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, no. 5, pp. 912-921, 1997.
[64] K. J. Tseng and J. Wang, “A new hybrid C-dump and buck-fronted converter for switched reluctance motors,” in Proc. IEEE IECON, 1999, vol. 3, pp. 1109-1114.
[65] Y. H. Yoon, D. H. Ran, S. J. Kim, D. K. Kim and C. Y. Won, “Current hysteresis controlled resonant C-dump converter for switched reluctance motor drive,” in Proc. IEEE PESC, 2004, vol. 2, pp. 1329-1334.
[66] T. W. Ching, K. T. Chau, and C. C. Chan, “A novel zero-voltage soft-switching converter for switched reluctance motor drives,” in Proc. IEEE IECON, 1998, vol. 2, pp. 899-904.
[67] L. G. B. Rolim, W. I. Suemitsu, E. H. Watanable, and R. Hanitsch, “Development of an improved switched reluctance motor drive using a soft-switching converter,” in IEE Proc. Elect. Power Appl., vol. 146, no. 5, pp. 488-494, 1999.
[68] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” in IEE Proc. Elect. Power Appl., vol. 147, no. 5, pp. 337-344, 2000.
[69] D. H. Lee, G. Xu, and J. W. Ahn, “Analysis of passive boost power converter for three-phase SRM drive,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 2961-2971, 2010.
[70] H. C. Chang and C. M. Liaw, “An integrated driving/charging switched reluctance motor drive using three-phase power module,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1763-1775, 2011.
[71] K. Chimata, N. Hoshi, and J. Haruna, “Characteristics of switched reluctance motor drive circuit with voltage boost function without additional reactor,” in Proc. IEEE PEDES, 2012, pp. 1-6.
[72] H. Goto, H. J. Guo, and O. Ichinokura, “A novel drive method for switched reluctance using three-phase power modules,” in Proc. EPE-PEMC, 2006, pp. 1027-1031.
[73] Y. C. Kim, Y. H. Yoon, B. K. Lee, J. Hur, and C. Y. Won, “A new cost effective SRM drive using commercial 6-switch IGBT modules,” in Proc. IEEE PESC, 2006, pp. 1-7.
[74] H. C. Chang, C. H. Chen, Y. H. Chiang, W. Y. Sean, and C. M. Liaw, “Establishment and control of a three-phase switched reluctance motor drive using intelligent power modules,” IET Elect. Power Appl., vol. 4, no. 9, pp. 772-782, 2010.
[75] H. C. Chang and C. M. Liaw, “An integrated driving/charging switched reluctance motor drive using three-phase power module,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1763-1775, 2011.
[76] FCAS50SN60 smart power module for SRM, www.fairchildsemi.com/ds/ FC/FCAS50SN60.pdf.
[77] FCAS20DN60BB smart power module for SRM, www.fairchildsemi.com/ds/ FC/FCAS20DN60BB.pdf.

D. Modeling and Dynamic Control
[78] N. J. Nagel and R. D. Lorenz, “Modeling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation,” IEEE Trans. Ind. Appl., vol. 36, pp. 714-722, 2000.
[79] D. N. Essah and S. D. Sudhoff, “An improved analytical model for the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 349-356, 2003.
[80] L. Chenjie, W. Wei, M. McDonough, and B. Fahimi, “An extended field reconstruction method for modeling of switched reluctance machines,” IEEE Trans. Magn., vol. 48, no. 2, pp. 1051-1054, Feb. 2012.
[81] S. Song, L. Ge, and M. Zhang, “Data-reconstruction-based modeling of SRM with few flux-linkage samples from torque-balanced measurement,” IEEE Trans. Energy Conver., vol. 31, no. 2, pp. 424-435, June 2016.
[82] H. K. Bae and R. Krishnan, “A study of current controllers and development of a novel current controller for high performance SRM drives,” in Proc. IEEE IAS, 1996, vol. 1, pp. 68-75.
[83] F. Blaabjerg, P. C. Kjaer, P. O. Rasmussen, and C. Cossar, “Improved digital current control methods in switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 563-572, 1999.
[84] G. G. Lopez and K. Rajashekara, “Peak PWM current control of switched reluctance and AC machines,” in Proc. Ind. Appl., 2002, vol. 2, pp. 1212-1218.
[85] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
[86] Z. Lin, D. Reay, B. Williams, and X. He, “High-performance current control for switched reluctance motors based non-line estimated parameters,” IET Elect. Power Appl., vol. 4, no.1, pp. 67-74, 2010.
[87] R. Mikail, I. Husain, Y. Sozer, M. S. Islam, and T. Sebastian, “A fixed switching frequency predictive current control method for switched reluctance machines,” IEEE Trans. Ind. Appl., vol. 50, no. 6, pp. 3717-3726, Nov. 2014.
[88] J. Ye, P. Malysz, and A. Emadi, “A fixed-switching-frequency integral sliding mode current controller for switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 3, no. 2, pp. 381-394, June 2015.
[89] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997.
[90] C. Lucas, M. M. Shanehchi, P. Asadi, and P. M. Rad, “A robust speed controller for switched reluctance motor with nonlinear QFT design approach,” in Proc. IEEE IAS, 2000, vol. 3, pp. 1573-1577.
[91] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor,” IEE Proc. Elect. Power Appl., vol. 148, no. 4, pp. 345-353, 2001.
[92] S. K. Panda, X. M. Zhu, and P. K. Dash, “Fuzzy gain scheduled PI speed controller for switched reluctance motor drive,” in Proc. IEEE IECON, 1997, vol. 3, pp. 989-994.
[93] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.

E. Ripple Torque Reduction and Commutation Instant Shifting
[94] J. Y. Chai, Y. W. Lin, and C. M. Liaw, “Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor,” in IEE Proc. Elect. Power Appl., vol. 153, no. 3, pp. 384-360, 2006.
[95] J. Y. Chai and C. M. Liaw, “Reduction of speed ripple and vibration for switched reluctance motor drive via intelligent current profiling,” IET Elect. Power Appl., vol. 4, no. 5, pp. 380-396, May 2010.
[96] K. Edamura and I. Miki, “Design of stator and rotor for noise reduction of SRM,” in Proc. ICEMS, 2014, pp. 1871-1874.
[97] Y. Jin, B. Bilgin, and A. Emadi, “An extended-speed low-ripple torque control of switched reluctance motor divers,” IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1457-1470, Mar. 2015.
[98] R. Mikail, I. Husain, M. S. Islam, Y. Sozer, and T. Sebastian, “Four-quadrant torque ripple minimization of switched reluctance machine through current profiling with mitigation of rotor eccentricity problem and sensor errors,” IEEE Trans. Ind. Appl., vol. 51, no. 3, pp. 2097-2104, May 2015.
[99] J. J. Gribble, P. C. Kjaer, C. Cossar, and T. J. E. Miller, “Optimal commutation angles for current controlled switched reluctance motors,” in Proc. IET ICPEVSD, 1996, pp. 87-92.
[100] B. Fahimi, G. Suresh, J. P. Johnson, M. Ehsani, M. Arefeen, and I. Panahi, “Self- tuning control of switched reluctance motors for optimized torque per ampere at all operating points,” in Proc. IEEE APEC, 1998, vol. 2, pp. 778-783.
[101] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[102] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
[103] S. A. Fatemi, H. M. Cheshmehbeigi, and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives,” in Proc. IEEE ECCTD, 2009, pp. 851-856.
[104] K. W. Hu, Y. Y. Chen, and C. M. Liaw, “A reversible position sensorless controlled switched-reluctance motor drive with adaptive and intuitive commutation tunings,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3781-3793, 2015.

F. Front-End Converters
[105] F. Caricchi, F. Crescimbini, G. Noia, and D. Pirolo, “Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,” in Proc. IEEE APEC, 1994, vol. 1, pp. 381-389.
[106] F. Caricchi, F. crescimbini, F. G. Capponi, and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” in Proc. IEEE APEC, 1998, vol. 1, pp. 287-293.
[107] J. Silvestre, “Half-bridge bidirectional DC-DC converter for small electric vehicle,” in Proc. SPEEDAM, 2008, pp. 884-888.
[108] Y. Du, X. Zhou, S. Bai, and S. Lukic, “Review of non-isolated bi-directional DC-DC converters for plug-in hybrid electric vehicle charge station application at municipal parking decks,” in Proc. IEEE APEC, 2010, pp.1145-1151.
[109] L. Kumar and S. Jain, “A multiple input dc-dc converter for interfacing of battery/ ultracapacitor in EVs/HEVs/FCVs,” in Proc. IEEE IICPE, 2012, pp. 1-6.
[110] O. C. Onar, J. Kobayashi, and A. Khaligh, “A fully directional universal power electronic interface for EV, HEV, and PHEV Applications,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5489-5498, 2013.
[111] A. K. Rathore and P. U R, “Analysis, design, and experimental results of novel snubberless bidirectional naturally clamped ZCS/ZVS current-fed half-bridge DC/DC converter for fuel cell vehicles,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4482-4491, Oct. 2013.
[112] K. W. Hu and C. M. Liaw, “On an auxiliary power unit with emergency AC power output and its robust controls,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4387-4402, Oct. 2013.
[113] A. Hintz, U. R. Prasanna, and K. Rajashekara, “Novel modular multiple-input bidirectional DC-DC power converter (MIPC) for HEV/FCV application,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3163-3172, May 2015.
[114] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer, and M. Badawy, “Performance analysis of bidirectional DC-DC converters for electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3442-3452, July 2015.
[115] M. McDonough, “Integration of inductively coupled power transfer and hybrid energy storage system: a multiport power electronics interface for battery-powered electric vehicles,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6423-6433, Nov. 2015.
[116] O. Hegazy, J. V. Mierlo, and P. Lataire, “Analysis, modeling, and implementation of a multi-device interleaved DC/DC converter for fuel cell hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4445-4458, Nov. 2012.
[117] S. Zhang and X. Yu, “Control strategy to achieve minimum/zero input current ripple for the interleaved boost converter in photovoltaic/fuel cell power conditioning system,” in Proc. IEEE ECCE, 2012, pp. 4301-4306.
[118] O. Hegazy, J. V. Mierlo, and P. Lataire, “Analysis, modeling, and implementation of a multidevice interleaved DC/DC converter for fuel cell hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4445-4458, Nov. 2012.
[119] J. Blanes, R. Gutierrez, A. Garrigos, J. Lizan, and J. Cuadrado, “Electric vehicle battery life extension using ultracapacitors and an FPGA controlled interleaved buck boost converter,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5940-5948, Dec. 2013.

G. Switch-Mode Rectifiers and G2V Operation
[120] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[121] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
[122] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey, and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[123] L. Huber, J. Yungtaek, and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, 2008.
[124] X. Zhou, S. Lukic, S. Bhattacharya, and A. Huang, “Design and control of grid-connected converter in bidirectional battery charger for plug-in hybrid electric vehicle application,” in Proc. IEEE VPPC, 2009, pp. 1716-1721.
[125] S. Lacroix, E. Laboure, and M. Hilairet, “An integrated fast battery charger for electric vehicle,” in Proc. IEEE VPPC, 2010, pp. 1-6.
[126] S. Haghbin et al., “Integrated chargers for EV’s and PHEV’s: examples and new solutions,” in Proc. ICEM, 2010, pp. 1-6.
[127] S. Haghbin, S. Lundmark, M. Alakula, and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: review and new solution,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 459-473, Feb. 2013.
[128] I. Lee and G. W. Moon, “Half-bridge integrated ZVS full-bridge converter with reduced conduction loss for electric vehicle battery chargers,” IEEE Trans. Ind. Electron., vol. 61, no. 8, pp. 3978-3988, 2014.
[129] H. Yihua, S. Xueguan, C. Wenping, and J. Bing, “New SR drive with integrated charging capacity for plug-in hybrid electric vehicles (PHEVs),” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5722-5731, Oct. 2014.
[130] I. Subotic, N. Bodo, and E. Levi, “An EV drive-train with integrated fast charging capability,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1461-1471, 2016.

H. Vienna Switch-Mode Rectifiers
[131] M. Zhang, B. Li, L. Hang, L. M. Tolbert, and Z. Lu, “Performance study for high power density three-phase Vienna PFC rectifier by using SVPWM control method,” in Proc. IEEE APEC, 2012, pp. 1187-1191.
[132] L. Wang, D. Zhang, Y. Wang, and Y. Gu, “Dynamic performance optimization for high-power density three-phase Vienna PFC rectifier,” in Proc. IEEE IFEEC, 2015, pp. 1-4.
[133] H. Vahedi, P. A. Labbe, and K. Al-Haddad, “Single-phase single-switch Vienna rectifier as electric vehicle PFC battery charger,” in Proc. IEEE APEC, 2015, pp. 1-6.
[134] K. W. Hu, “Development and operation control of a wind permanent-magnet synchronous generator based DC micro-grid with hybrid energy storage,” Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2015.

I. Inverters and V2H/V2G Operations
[135] S. J. Chiang and C. M. Liaw, “Single-phase three-wire transformerless inverter,” in IEE Proc. Elect. Power Appl., vol. 141, no. 4, pp. 197-205, 1994.
[136] X. Yaosuo, C. Liuchen, and S. Pinggang, “Recent developments in topologies of single-phase buck-boost inverters for small distributed power generators: an overview,” in Proc. IPEMC, 2004, vol. 3, pp. 1118-1123.
[137] Y. Wue, L. Chang, S. B. Kjaer, J. Bordonau, and T. Shimizu, “Topologies of single- phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004.
[138] C. G. C. Branco, C. M. T. Cruz, R. P. T. Bascope, and F. L. M. Antunes, “A non- isolated single-phase UPS topology with 110V/220V input-output voltage,” in Proc. IEEE IECON, 2005, pp. 930-935.
[139] B. S. Prasad, S. Jain, and V. Agarwal, “Universal single-stage grid-connected inverter,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 128-137, 2008.
[140] S. H. Lee, K. T. Kim, J. M. Kwon, and B. H. Kwon, “Single-phase transformerless bi- directional inverter with high efficiency and low leakage current,” IET Power Electron., vol. 7, no. 2, pp. 451-458, 2014.
[141] M. Amirabadi, B. Jeihoon, and H. A. Toliyat, “Sparse ac-link buck-boost inverter,” IEEE Trans. Power Electron., vol. 29, no. 8, pp. 3942-3953, 2014.
[142] X. Zhou, G. Wang, S. Lukic, S. Bhattacharya, and A. Huang, “Multi-function bi- directional battery charger for plug-in hybrid electric vehicle application,” in Proc. IEEE ECCE, 2009, pp. 3930-3936.
[143] F. Berthold, B. Blunier, D. Bouquain, S. Williamson, and A. Miraoui, “PHEV control strategy including vehicle to home (V2H) and home to vehicle (H2V) functionalities,” in Proc. IEEE VPPC, 2011, pp. 1-6.
[144] B. Kramer, S. Chakraborty, and B. Kroposki, “A review of plug-in vehicles and vehicle-to-grid capability,” in Proc. IEEE IECON, 2008, pp. 2278-2283.
[145] A. K. Verma, B. Singh, and D. T. Shahani, “Grid to vehicle and vehicle to grid energy transfer using single-phase bidirectional AC-DC converter and bidirectional DC-DC converter,” in Proc. IEEE ICEAS, 2011, pp. 1-5.
[146] N. Wong and M. Kazerani, “A review of bidirectional on-board charger topologies for plugin vehicles,” in Proc. IEEE CCECE, 2012, pp. 1-6.
[147] Y. Ota, H. Taniguchi, T. Nakajima, K. M. Liyanage, J. Baba and A. Yokoyama, “Autonomous distributed V2G (vehicle-to-grid) satisfying scheduled charging,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 559-564, 2012.
[148] W. Kramer, S. Chakraborty, B. Kroposki, A. Hoke, G. Martin, and T. Markel, “Grid interconnection and performance testing procedures for vehicle-to-grid (V2G) power electronics,” Technical Report NREL/CP-5500-54505, May 2012.
[149] M. A. Khan, I. Husain, and Y. Sozer, “Integrated electric motor drive and power electronics for bidirectional power flow between the electric vehicle and DC or AC grid,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5774-5783, 2013.
[150] M. Yilmaz and P. T. Krein, “Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces,” IEEE Trans. Power Electron., vol. 28, no.12, pp. 5673-5689, 2013.
[151] T. S. Ustun, C. R. Ozansoy, and A. Zayegh, “Implementing Vehicle-to-Grid (V2G) technology with IEC 61850-7-420,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 1180-1187, Jun. 2013.
[152] M. C. Kisacikoglu, M. Kesler, and L. M. Tolbert, “Single-phase on-board bidirectional PEV charger for V2G reactive power operation,” IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 767-775, Mar. 2015.
[153] S. Kim and F. Kang, “Multifunctional onboard battery charger for plug-in electric vehicles,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3460-3472, June 2015.
[154] O. Onar, J. Kobayashi, and A. Khaligh, “A multi-level grid interactive bi-directional AC/DC-DC/AC converter and a hybrid battery/ultra-capacitor energy storage system with integrated magnetics for plug-in hybrid electric vehicles,” in Proc. IEEE APE, 2011, pp. 829-835.
[155] H. Tanaka, T. Tanaka, T. Wakimoto, E. Hiraki, and M. Okamoto, “Reduced-capacity smart charger for electric vehicles on single-phase three-wire distribution feeders with reactive power control,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 315-324, Jan. 2015.
[156] I. Subotic, N. Bodo, and E. Levi, “Single-phase on-board integrated battery chargers for EVs based on multiphase machines,” IEEE Trans. Power Electron., vol. 31, no. 9, pp. 6511-6523, Sept. 2016.
[157] R. Surada and A. Khaligh, “A novel approach towards integration of propulsion machine inverter with energy storage charger in plug-in hybrid electric vehicles,” in Proc. IEEE IECON, 2010, vol. 3, pp. 2493-2498.

J. Others
[158] T. J. Barlow, S. Latham, I. S. McCrae, and P. G. Boulter, “A reference book of driving cycles for use in the measurement of road vehicle emissions,” June, 2009.
[159] M. J. Yeh, “A switched-reluctance motor drive for electric vehicles with grid-to- vehicle and vehicle-to-grid bidirectional operation capabilities,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2012.
[160] P. H. Yi, “An electric vehicle switched-reluctance motor drive with battery/ super- capacitor hybrid energy storage and grid-to-vehicle/vehicle-to-grid functions,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2013.
[161] Y. J. Sun, “Development of an electric vehicle switched-reluctance motor drive with super-capacitor,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2014.
[162] J. J. He, “A battery/supercapacitor powered EV SRM drive with G2V/V2G functions,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2015.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *