|
A. Renewable Energy and Electric Vehicles [1] D. Boroyevich, I. Cvetkovic, D. Dong, R. Burgos, F. Wang, and F. Lee, “Future electronic power distribution systems a contemplative view,” in Proc. IEEE OPTIM, 2010, pp. 1369-1380. [2] G. Wu, S. Kodama, Y. Ono, and Y. Monma, “A hybrid microgrid system including renewable power generations and energy storages for supplying both the DC and AC loads,” in Proc. IEEE ICRERA, 2012, pp. 1-5. [3] I. Strnad and D. Skrlec, “An approach to the optimal operation of the microgrid with renewable energy sources and energy storage systems,” in Proc. IEEE EUROCON, 2013, pp. 1135-1140. [4] F. Blaabjerg and K. Ma, “Future on power electronics for wind turbine systems,” IEEE Trans. Power Electron., vol. 1, no. 3, pp. 139-152, Sep. 2013. [5] J. G. Matos, F. S. F. Silva, and L. A. S. Ribeiro, “Power control in AC isolated microgrids with renewable energy sources and energy storage systems,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3490-3498, 2015. [6] S. S. Thale, R. G. Wandhare, and V. Agarwal, “A novel reconfigurable microgrid architecture with renewable energy sources and storage,” IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 1805-1816, 2015. [7] K. W. Hu and C. M. Liaw, “Incorporated operation control of DC microgrid and electric vehicle,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 202-215, Jan. 2016. [8] T. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids-part II: a review of power architectures, applications, and standardization issues,” IEEE Power Electron., vol. 31, no. 5, pp. 3528-3549, May 2016. [9] M. Zeraoulia, M. E. H. Benbouzid, and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: A comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, Nov. 2006. [10] G. Nanda and N. C. Kar, “A survey and comparison of characteristics of motor drives used in electric vehicles,” in Proc. IEEE CCECE, 2006, pp. 811-814. [11] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for ev and HEV applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 245-254, Oct. 2015. [12] J. Cao and A. Emadi, “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 122-132, Jan. 2012. [13] S. S. Williamson, A. K. Rathore, F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, May 2015. [14] S. Haghbin, S. Lundmark, M. Alaküla, and O. Carlson, “An isolated high-power integrated charger in electrified-vehicle applications,” IEEE Trans. Veh. Technol., vol. 60, no. 9, pp. 4115-4126, Nov. 2011. [15] B. Whitaker et al., “A high-density, high-efficiency, isolated on-board vehicle battery charger utilizing silicon carbide power devices,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2606-2617, May 2013. [16] S. Haghbin, K. Khan, S. Zhao, M. Alakula, S. Lundmark, and O. Carlson, “An integrated 20-kW motor drive and isolated battery charger for plug-in vehicles,” IEEE Trans. Power Electron., vol. 28, no. 8, pp. 4013-4029, Aug. 2013. [17] S. Haghbin, S. Lundmark, M. Alakula, and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: review and new solution,” IEEE Trans. Electron., vol. 60, no. 2, pp. 459-473, Feb. 2013. [18] W. Y. Choi, M. K. Yang, and H. S. Cho, “High-frequency-link soft-switching PWM DC–DC converter for EV on-board battery chargers,” IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4136-4145, Aug. 2014. [19] V. R. Roberto, L. G. Pau, H. P. Daniel, S. Andreas, C. Ignasi, C. Z. Miguel, and V. Narcís, “Electric vehicles in power systems with distributed generation: vehicle to microgrid (V2M) project,” in Proc. IEEE EPQU, 2011, pp. 1-6. [20] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151-2169, May 2013. [21] J. G. Pinto, V. Monteiro, H. Gonçalves, B. Exposto, D. Pedrosa, C. Couto, and J. L. Afonso, “Bidirectional battery charger with grid-to-vehicle, vehicle-to-grid and vehicle-to-home technologies,” in Proc. IEEE IECON, 2013, pp. 5934-5939. [22] L. Chunhua, K. T. Chau, W. Diyun, and G. Shuang, “Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies,” in Proc. IEEE, vol. 101, no. 11, pp. 2409-2427, 2013. [23] J. G. Pinto, V. Monteiro, H. Goncalves, and J. L. Afonso, “Onboard reconfigurable battery charger for electric vehicles with traction-to-auxiliary mode,” IEEE Trans. Veh. Technol., vol. 63, no. 3, pp. 1104-1116, 2014. [24] K. M. Rahman, B. Fahimi, G. Suresh, A. V. Rajarathnam, and M. Ehsani, “Advantages of switched reluctance motor applications to EV and HEV design and control issues,” IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 111-121, 2000. [25] H. Gao, Y. Gao, and M. Ehsani, “A neural network based SRM drive control strategy for regenerative braking in EV and HEV,” in Proc. IEEE IEMDC, 2001, pp. 571-575. [26] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009. [27] N. Hoshi, A. Chiba, and M. Takemoto, “Characteristic measurements of switched reluctance motor on prototype electric vehicle,” in Proc. IEEE IEVC, 2012, pp. 1-8. [28] N. Wada, N. Momma, and I. Miki, “Rotor position estimation method in high speed region for 3-phase SRM used in EV,” in Proc. ICEMS, 2012, pp. 1-5. [29] P. J. Grbovic, P. Delarue, P. Le Moigne, and P. Bartholomeus, “A three-terminal ultracapacitor-based energy storage and PFC device for regenerative controlled electric drives,” IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 301-316, Jan. 2012.
B. Battery and Supercapacitor [30] A. Affanni, A. Bellini, G. Franceschini, P. Guglielmi, and C. Tassoni, “Battery choice and management for new-generation electric vehicles,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1343-1349, 2005. [31] M. Brandl et al., “Batteries and battery management systems for electric vehicles,” in Proc. IEEE DATE, 2012, pp. 971-976. [32] G. Capano, M. Mozzone, and N. C. Kar, “Study of the electric power balance in a vehicle for the choice of the battery,” in Proc. IEEE ITEC, 2013, pp. 1-6. [33] O. M. F. Camacho, P. B. Nørgård, N. Rao, and L. M. Popa, “Electrical vehicle batteries testing in a distribution network using sustainable energy,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 1033-1042, March 2014. [34] S. Pay and Y. Baghzouz, “Effectiveness of battery-supercapacitor combination in electric vehicles,” in Proc. IEEE Power Tech Conf, Bologna, Italy, Jun. 2003, vol. 3, pp. 1-6. [35] A. F. Burke, “Batteries and ultra-capacitors for electric, hybrid, and fuel cell vehicles,” in Proc. IEEE, vol. 95, no. 4, pp. 806-820, 2007. [36] S. Lu, K. A. Corzine, and M. Ferdowsi, “A new battery/ultracapacitor energy storage system design and its motor drive integration for hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1516-1523, 2007. [37] M. B. Camara, H. Galous, F. Gustin, and A. Berthon, “Design and new control of DC/DC converters to share energy between supercapacitors and batteries in hybrid vehicles,” IEEE Trans. Veh. Technol., vol.57, no. 5, pp.2721-2735, Sept. 2008. [38] H. Yoo, S. K. Sul, Y. Park, and J. Jeong, “System integration and power-flow management for a series hybrid electric vehicle using supercapacitors and batteries,” IEEE Trans. Ind. Appl., vol. 44, no. 1, pp. 108-114, 2008. [39] S. Lambert, V. Pickert, J. Holden, W. Li, and X. He, “Overview of supercapacitor voltage equalization circuits for an electric vehicle charging application,” in Proc. IEEE VPPC, 2010, pp. 1-7. [40] M. B. Camara, H. Gualous, F. Gustin, and A. Berthon, “DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications- polynomial control strategy,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 587-597, 2010. [41] M. Zandi, A. Payman, J. Martin, S. Pierfederici, B. Davat, and F. Meibody-Tabar, “Energy management of a fuel cell/supercapacitor/battery power source for electric vehicular applications,” IEEE Trans. Veh. Technol., vol. 60, no. 2, pp. 443-443, Feb. 2011. [42] M. Neenu and S. Muthukumaran, “A battery with ultracapacitor hybrid energy storage system in electric vehicles,” in Proc. IEEE ICAESM, 2012, pp. 731-735. [43] R. Carter, A. Cruden, and P. J. Hall, “Optimizing for efficiency or battery life in a battery/supercapacitor electric vehicle,” IEEE Trans. Veh. Technol., vol. 61, no. 4, pp. 1526-1533, May 2012. [44] A. Ostadi and S. K. Chen, “Hybrid energy storage system (HESS) in vehicular applications: a review on interfacing battery and ultra-capacitor units,” in Proc. IEEE ITEC, 2013, pp. 1-7. [45] A. Tina, M. B. Camara, B. Dakyo, and Y. Azzouz, “DC/DC and DC/AC converters control for hybrid electric vehicles energy management-ultracapacitors and fuel cell,” IEEE Trans. Ind. Informat., vol. 9, no. 2, pp. 686-696, 2013. [46] K. Hata, N. Watanabe, and Kyungmin Sung, “A series or parallel changeover system using battery with EDLC for EV,” in Proc. EPE, 2013, pp. 1-10. [47] X. Huang, H. Tosiyoki, and H. Yoichi, “System design and converter control for super capacitor and battery hybrid energy system of compact electric vehicles,” in Proc. IEEE ECCE, 2014, pp. 1-10. [48] X. Huang, H. Tosiyoki, and H. Yoichi, “Bidirectional power flow control for battery super capacitor hybrid energy system for electric vehicles with in-wheel motors,” in Proc. EPE-PEMC, 2014, pp. 1078-1083. [49] R. E. Araújo, R. d. Castro, C. Pinto, P. Melo, and D. Freitas, “Combined sizing and energy management in EVs with batteries and supercapacitors,” IEEE Trans. Veh. Technol., vol. 63, no. 7, pp. 3062-3076, Sept. 2014. [50] K. W. Hu, P. H. Yi, and C. M. Liaw, “An EV SRM drive powered by battery/supercapacitor with G2V and V2H/V2G capabilities,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4714-4727, Aug. 2015.
C. Switched-Reluctance Motor Drive and Converter [51] T. J. E. Miller, Switched reluctance motors and their control, Clarendon Press, Oxford, 1993. [52] R. Krishnan, Switched reluctance motor drives: modeling, simulation, analysis, design, and applications, New York: CRC Press, 2001. [53] A. V. Radun, “Design considerations for the switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 3, no. 5, pp. 1079-1087, 1995. [54] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002. [55] K. M. Rahman and S. E. Schulz, “Design of high efficiency and high density switched reluctance motor for vehicle propulsion,” in Proc. IEEE IAC, 2001, vol. 3, pp. 2104-2110. [56] S. Kachapornkul, P. Jitkreeyarn, P. Somsiri, K. Tungpimolrut, A. Chiba, and T. Fukao, “A design of 15 kW switched reluctance motor for electric vehicle applications,” in Proc. IEEE ICEMS, 2007, pp. 1690-1693. [57] K. Kiyota and A. Chiba, “Design of switched reluctance motor competitive to 60-kW IPMSM in third-generation hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2303-2309, 2012. [58] T. Shibamoto, K. Nakamura, H. Goto, and O. Ichinokura, “A design of axis-gap switched reluctance motor for in-wheel direct drive EV,” in Proc. IEEE ICEM, 2012, pp. 1158-1163. [59] B. Bilgin, A. Emadi, and M. Krishnamurthy, “Comprehensive evaluation of the dynamic performance of a 6/10 SRM for traction application in PHEV,” IEEE Trans. Ind. Electron., vol. 60, no.72, pp. 2564-2575, 2013. [60] Y. Hu, C. Gan, W. Cao, C. Li, and S. J. Finney, “Split converter-fed SRM drive for flexible charging in EV/HEV applications,” IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6085-6095, Oct. 2015. [61] K. Kiyota, T. Kakishima, A. Chiba, and M. A. Rahman, “Cylindrical rotor design for acoustic noise and windage loss reduction in switched reluctance motor for HEV applications,” IEEE Trans. Ind. Appl., vol. 52, no. 1, pp. 154-162, Jan. 2016. [62] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1049, 1991. [63] S. Mir, I. Husain, and M. E. Elbuluk, “Energy-efficient C-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, no. 5, pp. 912-921, 1997. [64] K. J. Tseng and J. Wang, “A new hybrid C-dump and buck-fronted converter for switched reluctance motors,” in Proc. IEEE IECON, 1999, vol. 3, pp. 1109-1114. [65] Y. H. Yoon, D. H. Ran, S. J. Kim, D. K. Kim and C. Y. Won, “Current hysteresis controlled resonant C-dump converter for switched reluctance motor drive,” in Proc. IEEE PESC, 2004, vol. 2, pp. 1329-1334. [66] T. W. Ching, K. T. Chau, and C. C. Chan, “A novel zero-voltage soft-switching converter for switched reluctance motor drives,” in Proc. IEEE IECON, 1998, vol. 2, pp. 899-904. [67] L. G. B. Rolim, W. I. Suemitsu, E. H. Watanable, and R. Hanitsch, “Development of an improved switched reluctance motor drive using a soft-switching converter,” in IEE Proc. Elect. Power Appl., vol. 146, no. 5, pp. 488-494, 1999. [68] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” in IEE Proc. Elect. Power Appl., vol. 147, no. 5, pp. 337-344, 2000. [69] D. H. Lee, G. Xu, and J. W. Ahn, “Analysis of passive boost power converter for three-phase SRM drive,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 2961-2971, 2010. [70] H. C. Chang and C. M. Liaw, “An integrated driving/charging switched reluctance motor drive using three-phase power module,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1763-1775, 2011. [71] K. Chimata, N. Hoshi, and J. Haruna, “Characteristics of switched reluctance motor drive circuit with voltage boost function without additional reactor,” in Proc. IEEE PEDES, 2012, pp. 1-6. [72] H. Goto, H. J. Guo, and O. Ichinokura, “A novel drive method for switched reluctance using three-phase power modules,” in Proc. EPE-PEMC, 2006, pp. 1027-1031. [73] Y. C. Kim, Y. H. Yoon, B. K. Lee, J. Hur, and C. Y. Won, “A new cost effective SRM drive using commercial 6-switch IGBT modules,” in Proc. IEEE PESC, 2006, pp. 1-7. [74] H. C. Chang, C. H. Chen, Y. H. Chiang, W. Y. Sean, and C. M. Liaw, “Establishment and control of a three-phase switched reluctance motor drive using intelligent power modules,” IET Elect. Power Appl., vol. 4, no. 9, pp. 772-782, 2010. [75] H. C. Chang and C. M. Liaw, “An integrated driving/charging switched reluctance motor drive using three-phase power module,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1763-1775, 2011. [76] FCAS50SN60 smart power module for SRM, www.fairchildsemi.com/ds/ FC/FCAS50SN60.pdf. [77] FCAS20DN60BB smart power module for SRM, www.fairchildsemi.com/ds/ FC/FCAS20DN60BB.pdf.
D. Modeling and Dynamic Control [78] N. J. Nagel and R. D. Lorenz, “Modeling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation,” IEEE Trans. Ind. Appl., vol. 36, pp. 714-722, 2000. [79] D. N. Essah and S. D. Sudhoff, “An improved analytical model for the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 349-356, 2003. [80] L. Chenjie, W. Wei, M. McDonough, and B. Fahimi, “An extended field reconstruction method for modeling of switched reluctance machines,” IEEE Trans. Magn., vol. 48, no. 2, pp. 1051-1054, Feb. 2012. [81] S. Song, L. Ge, and M. Zhang, “Data-reconstruction-based modeling of SRM with few flux-linkage samples from torque-balanced measurement,” IEEE Trans. Energy Conver., vol. 31, no. 2, pp. 424-435, June 2016. [82] H. K. Bae and R. Krishnan, “A study of current controllers and development of a novel current controller for high performance SRM drives,” in Proc. IEEE IAS, 1996, vol. 1, pp. 68-75. [83] F. Blaabjerg, P. C. Kjaer, P. O. Rasmussen, and C. Cossar, “Improved digital current control methods in switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 563-572, 1999. [84] G. G. Lopez and K. Rajashekara, “Peak PWM current control of switched reluctance and AC machines,” in Proc. Ind. Appl., 2002, vol. 2, pp. 1212-1218. [85] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003. [86] Z. Lin, D. Reay, B. Williams, and X. He, “High-performance current control for switched reluctance motors based non-line estimated parameters,” IET Elect. Power Appl., vol. 4, no.1, pp. 67-74, 2010. [87] R. Mikail, I. Husain, Y. Sozer, M. S. Islam, and T. Sebastian, “A fixed switching frequency predictive current control method for switched reluctance machines,” IEEE Trans. Ind. Appl., vol. 50, no. 6, pp. 3717-3726, Nov. 2014. [88] J. Ye, P. Malysz, and A. Emadi, “A fixed-switching-frequency integral sliding mode current controller for switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 3, no. 2, pp. 381-394, June 2015. [89] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997. [90] C. Lucas, M. M. Shanehchi, P. Asadi, and P. M. Rad, “A robust speed controller for switched reluctance motor with nonlinear QFT design approach,” in Proc. IEEE IAS, 2000, vol. 3, pp. 1573-1577. [91] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor,” IEE Proc. Elect. Power Appl., vol. 148, no. 4, pp. 345-353, 2001. [92] S. K. Panda, X. M. Zhu, and P. K. Dash, “Fuzzy gain scheduled PI speed controller for switched reluctance motor drive,” in Proc. IEEE IECON, 1997, vol. 3, pp. 989-994. [93] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
E. Ripple Torque Reduction and Commutation Instant Shifting [94] J. Y. Chai, Y. W. Lin, and C. M. Liaw, “Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor,” in IEE Proc. Elect. Power Appl., vol. 153, no. 3, pp. 384-360, 2006. [95] J. Y. Chai and C. M. Liaw, “Reduction of speed ripple and vibration for switched reluctance motor drive via intelligent current profiling,” IET Elect. Power Appl., vol. 4, no. 5, pp. 380-396, May 2010. [96] K. Edamura and I. Miki, “Design of stator and rotor for noise reduction of SRM,” in Proc. ICEMS, 2014, pp. 1871-1874. [97] Y. Jin, B. Bilgin, and A. Emadi, “An extended-speed low-ripple torque control of switched reluctance motor divers,” IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1457-1470, Mar. 2015. [98] R. Mikail, I. Husain, M. S. Islam, Y. Sozer, and T. Sebastian, “Four-quadrant torque ripple minimization of switched reluctance machine through current profiling with mitigation of rotor eccentricity problem and sensor errors,” IEEE Trans. Ind. Appl., vol. 51, no. 3, pp. 2097-2104, May 2015. [99] J. J. Gribble, P. C. Kjaer, C. Cossar, and T. J. E. Miller, “Optimal commutation angles for current controlled switched reluctance motors,” in Proc. IET ICPEVSD, 1996, pp. 87-92. [100] B. Fahimi, G. Suresh, J. P. Johnson, M. Ehsani, M. Arefeen, and I. Panahi, “Self- tuning control of switched reluctance motors for optimized torque per ampere at all operating points,” in Proc. IEEE APEC, 1998, vol. 2, pp. 778-783. [101] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003. [102] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003. [103] S. A. Fatemi, H. M. Cheshmehbeigi, and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives,” in Proc. IEEE ECCTD, 2009, pp. 851-856. [104] K. W. Hu, Y. Y. Chen, and C. M. Liaw, “A reversible position sensorless controlled switched-reluctance motor drive with adaptive and intuitive commutation tunings,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3781-3793, 2015.
F. Front-End Converters [105] F. Caricchi, F. Crescimbini, G. Noia, and D. Pirolo, “Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,” in Proc. IEEE APEC, 1994, vol. 1, pp. 381-389. [106] F. Caricchi, F. crescimbini, F. G. Capponi, and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” in Proc. IEEE APEC, 1998, vol. 1, pp. 287-293. [107] J. Silvestre, “Half-bridge bidirectional DC-DC converter for small electric vehicle,” in Proc. SPEEDAM, 2008, pp. 884-888. [108] Y. Du, X. Zhou, S. Bai, and S. Lukic, “Review of non-isolated bi-directional DC-DC converters for plug-in hybrid electric vehicle charge station application at municipal parking decks,” in Proc. IEEE APEC, 2010, pp.1145-1151. [109] L. Kumar and S. Jain, “A multiple input dc-dc converter for interfacing of battery/ ultracapacitor in EVs/HEVs/FCVs,” in Proc. IEEE IICPE, 2012, pp. 1-6. [110] O. C. Onar, J. Kobayashi, and A. Khaligh, “A fully directional universal power electronic interface for EV, HEV, and PHEV Applications,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5489-5498, 2013. [111] A. K. Rathore and P. U R, “Analysis, design, and experimental results of novel snubberless bidirectional naturally clamped ZCS/ZVS current-fed half-bridge DC/DC converter for fuel cell vehicles,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4482-4491, Oct. 2013. [112] K. W. Hu and C. M. Liaw, “On an auxiliary power unit with emergency AC power output and its robust controls,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4387-4402, Oct. 2013. [113] A. Hintz, U. R. Prasanna, and K. Rajashekara, “Novel modular multiple-input bidirectional DC-DC power converter (MIPC) for HEV/FCV application,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3163-3172, May 2015. [114] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer, and M. Badawy, “Performance analysis of bidirectional DC-DC converters for electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3442-3452, July 2015. [115] M. McDonough, “Integration of inductively coupled power transfer and hybrid energy storage system: a multiport power electronics interface for battery-powered electric vehicles,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6423-6433, Nov. 2015. [116] O. Hegazy, J. V. Mierlo, and P. Lataire, “Analysis, modeling, and implementation of a multi-device interleaved DC/DC converter for fuel cell hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4445-4458, Nov. 2012. [117] S. Zhang and X. Yu, “Control strategy to achieve minimum/zero input current ripple for the interleaved boost converter in photovoltaic/fuel cell power conditioning system,” in Proc. IEEE ECCE, 2012, pp. 4301-4306. [118] O. Hegazy, J. V. Mierlo, and P. Lataire, “Analysis, modeling, and implementation of a multidevice interleaved DC/DC converter for fuel cell hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4445-4458, Nov. 2012. [119] J. Blanes, R. Gutierrez, A. Garrigos, J. Lizan, and J. Cuadrado, “Electric vehicle battery life extension using ultracapacitors and an FPGA controlled interleaved buck boost converter,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5940-5948, Dec. 2013.
G. Switch-Mode Rectifiers and G2V Operation [120] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003. [121] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003. [122] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey, and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004. [123] L. Huber, J. Yungtaek, and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, 2008. [124] X. Zhou, S. Lukic, S. Bhattacharya, and A. Huang, “Design and control of grid-connected converter in bidirectional battery charger for plug-in hybrid electric vehicle application,” in Proc. IEEE VPPC, 2009, pp. 1716-1721. [125] S. Lacroix, E. Laboure, and M. Hilairet, “An integrated fast battery charger for electric vehicle,” in Proc. IEEE VPPC, 2010, pp. 1-6. [126] S. Haghbin et al., “Integrated chargers for EV’s and PHEV’s: examples and new solutions,” in Proc. ICEM, 2010, pp. 1-6. [127] S. Haghbin, S. Lundmark, M. Alakula, and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: review and new solution,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 459-473, Feb. 2013. [128] I. Lee and G. W. Moon, “Half-bridge integrated ZVS full-bridge converter with reduced conduction loss for electric vehicle battery chargers,” IEEE Trans. Ind. Electron., vol. 61, no. 8, pp. 3978-3988, 2014. [129] H. Yihua, S. Xueguan, C. Wenping, and J. Bing, “New SR drive with integrated charging capacity for plug-in hybrid electric vehicles (PHEVs),” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5722-5731, Oct. 2014. [130] I. Subotic, N. Bodo, and E. Levi, “An EV drive-train with integrated fast charging capability,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1461-1471, 2016.
H. Vienna Switch-Mode Rectifiers [131] M. Zhang, B. Li, L. Hang, L. M. Tolbert, and Z. Lu, “Performance study for high power density three-phase Vienna PFC rectifier by using SVPWM control method,” in Proc. IEEE APEC, 2012, pp. 1187-1191. [132] L. Wang, D. Zhang, Y. Wang, and Y. Gu, “Dynamic performance optimization for high-power density three-phase Vienna PFC rectifier,” in Proc. IEEE IFEEC, 2015, pp. 1-4. [133] H. Vahedi, P. A. Labbe, and K. Al-Haddad, “Single-phase single-switch Vienna rectifier as electric vehicle PFC battery charger,” in Proc. IEEE APEC, 2015, pp. 1-6. [134] K. W. Hu, “Development and operation control of a wind permanent-magnet synchronous generator based DC micro-grid with hybrid energy storage,” Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2015.
I. Inverters and V2H/V2G Operations [135] S. J. Chiang and C. M. Liaw, “Single-phase three-wire transformerless inverter,” in IEE Proc. Elect. Power Appl., vol. 141, no. 4, pp. 197-205, 1994. [136] X. Yaosuo, C. Liuchen, and S. Pinggang, “Recent developments in topologies of single-phase buck-boost inverters for small distributed power generators: an overview,” in Proc. IPEMC, 2004, vol. 3, pp. 1118-1123. [137] Y. Wue, L. Chang, S. B. Kjaer, J. Bordonau, and T. Shimizu, “Topologies of single- phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004. [138] C. G. C. Branco, C. M. T. Cruz, R. P. T. Bascope, and F. L. M. Antunes, “A non- isolated single-phase UPS topology with 110V/220V input-output voltage,” in Proc. IEEE IECON, 2005, pp. 930-935. [139] B. S. Prasad, S. Jain, and V. Agarwal, “Universal single-stage grid-connected inverter,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 128-137, 2008. [140] S. H. Lee, K. T. Kim, J. M. Kwon, and B. H. Kwon, “Single-phase transformerless bi- directional inverter with high efficiency and low leakage current,” IET Power Electron., vol. 7, no. 2, pp. 451-458, 2014. [141] M. Amirabadi, B. Jeihoon, and H. A. Toliyat, “Sparse ac-link buck-boost inverter,” IEEE Trans. Power Electron., vol. 29, no. 8, pp. 3942-3953, 2014. [142] X. Zhou, G. Wang, S. Lukic, S. Bhattacharya, and A. Huang, “Multi-function bi- directional battery charger for plug-in hybrid electric vehicle application,” in Proc. IEEE ECCE, 2009, pp. 3930-3936. [143] F. Berthold, B. Blunier, D. Bouquain, S. Williamson, and A. Miraoui, “PHEV control strategy including vehicle to home (V2H) and home to vehicle (H2V) functionalities,” in Proc. IEEE VPPC, 2011, pp. 1-6. [144] B. Kramer, S. Chakraborty, and B. Kroposki, “A review of plug-in vehicles and vehicle-to-grid capability,” in Proc. IEEE IECON, 2008, pp. 2278-2283. [145] A. K. Verma, B. Singh, and D. T. Shahani, “Grid to vehicle and vehicle to grid energy transfer using single-phase bidirectional AC-DC converter and bidirectional DC-DC converter,” in Proc. IEEE ICEAS, 2011, pp. 1-5. [146] N. Wong and M. Kazerani, “A review of bidirectional on-board charger topologies for plugin vehicles,” in Proc. IEEE CCECE, 2012, pp. 1-6. [147] Y. Ota, H. Taniguchi, T. Nakajima, K. M. Liyanage, J. Baba and A. Yokoyama, “Autonomous distributed V2G (vehicle-to-grid) satisfying scheduled charging,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 559-564, 2012. [148] W. Kramer, S. Chakraborty, B. Kroposki, A. Hoke, G. Martin, and T. Markel, “Grid interconnection and performance testing procedures for vehicle-to-grid (V2G) power electronics,” Technical Report NREL/CP-5500-54505, May 2012. [149] M. A. Khan, I. Husain, and Y. Sozer, “Integrated electric motor drive and power electronics for bidirectional power flow between the electric vehicle and DC or AC grid,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5774-5783, 2013. [150] M. Yilmaz and P. T. Krein, “Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces,” IEEE Trans. Power Electron., vol. 28, no.12, pp. 5673-5689, 2013. [151] T. S. Ustun, C. R. Ozansoy, and A. Zayegh, “Implementing Vehicle-to-Grid (V2G) technology with IEC 61850-7-420,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 1180-1187, Jun. 2013. [152] M. C. Kisacikoglu, M. Kesler, and L. M. Tolbert, “Single-phase on-board bidirectional PEV charger for V2G reactive power operation,” IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 767-775, Mar. 2015. [153] S. Kim and F. Kang, “Multifunctional onboard battery charger for plug-in electric vehicles,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3460-3472, June 2015. [154] O. Onar, J. Kobayashi, and A. Khaligh, “A multi-level grid interactive bi-directional AC/DC-DC/AC converter and a hybrid battery/ultra-capacitor energy storage system with integrated magnetics for plug-in hybrid electric vehicles,” in Proc. IEEE APE, 2011, pp. 829-835. [155] H. Tanaka, T. Tanaka, T. Wakimoto, E. Hiraki, and M. Okamoto, “Reduced-capacity smart charger for electric vehicles on single-phase three-wire distribution feeders with reactive power control,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 315-324, Jan. 2015. [156] I. Subotic, N. Bodo, and E. Levi, “Single-phase on-board integrated battery chargers for EVs based on multiphase machines,” IEEE Trans. Power Electron., vol. 31, no. 9, pp. 6511-6523, Sept. 2016. [157] R. Surada and A. Khaligh, “A novel approach towards integration of propulsion machine inverter with energy storage charger in plug-in hybrid electric vehicles,” in Proc. IEEE IECON, 2010, vol. 3, pp. 2493-2498.
J. Others [158] T. J. Barlow, S. Latham, I. S. McCrae, and P. G. Boulter, “A reference book of driving cycles for use in the measurement of road vehicle emissions,” June, 2009. [159] M. J. Yeh, “A switched-reluctance motor drive for electric vehicles with grid-to- vehicle and vehicle-to-grid bidirectional operation capabilities,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2012. [160] P. H. Yi, “An electric vehicle switched-reluctance motor drive with battery/ super- capacitor hybrid energy storage and grid-to-vehicle/vehicle-to-grid functions,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2013. [161] Y. J. Sun, “Development of an electric vehicle switched-reluctance motor drive with super-capacitor,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2014. [162] J. J. He, “A battery/supercapacitor powered EV SRM drive with G2V/V2G functions,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2015.
|