帳號:guest(18.221.100.11)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王鈞平
作者(外文):Wang, Chun Ping
論文名稱(中文):分切合整數位控制100 kVA多功能換流器研製
論文名稱(外文):Design and Implementation of 100 kVA D-Σ Digital Controlled Multi-Function Inverter
指導教授(中文):吳財福
指導教授(外文):Wu, Tasi Fu
口試委員(中文):鄒應嶼
陳耀銘
余國瑞
口試委員(外文):Tzou, Ying Yu
Chen, Yaow Ming
Yu, Gwo Ruey
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:103061507
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:94
中文關鍵詞:三相四線式換流器分切合整數位控制交流穩壓負載阻抗估測併網實虛功補償
外文關鍵詞:three-phase four-wire inverterD-Σ digital controlac-voltage regulationload impedance estimationgrid connectionactive/reactive power compensation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:202
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究設計與製作一部額定容量為100 kVA且具備多功能的換流器,其中以三相四線半橋式的電路架構作為高功率的傳輸媒介,並將微控制器Renesas RX62T作為控制核心。本換流器主要有兩種操作模式,分別是交流穩壓模式與併網模式。在交流穩壓模式下,換流器採用電壓型分切合整數位控制法,其中包含負載阻抗估測法,使換流器能夠輸出穩定的三相弦波電壓供三相負載使用;在併網模式下,換流器則採用電流型分切合整數位控制法,此時換流器便能依照實虛功平面輸出或輸入不同大小的實虛功,進而補償電網電壓與電網頻率。
在換流器控制方面,本研究使用的分切合整數位控制免除傳統abc-dq座標軸轉換,大大地簡化推導受控體與控制法則的過程,並藉由設計控制器抵消直流鏈電壓、開關切換頻率以及電感值變動對受控體的影響。分切合整數位控制將實際上會隨電流大小改變的電感值納入考量,並允許寬廣的變化,可避免因電感值衰減造成輸出波形失真,也可選用較小的電感鐵芯以降低體積與成本。此外,結合分切合整數位控制的正弦脈寬調變(Sinusoidal Pulse Width Modulation, SPWM)將三相換流器等效成三個單相換流器分別進行控制,也降低控制上的複雜度。最後,將分切合整數位控制法實際應用於換流器的控制,再以模擬與實測結果驗證此換流器系統的可行性。
This thesis presents design and implementation of a 100 kVA division-summation (D-Σ) digital controlled multi-function inverter. A three-phase four-wire half-bridge circuit structure is adopted for high power transferring and the microcontroller Renesas RX62T is the control center of the system. The inverter can be operated in grid-connected mode and ac-voltage regulation mode. In the ac-voltage regulation mode, the voltage tracking with D-Σ digital control, including load impedance estimation, is used for the inverter to output stable three-phase sinusoidal voltage. In the grid-connected mode, the current tracking also with D-Σ digital control is utilized. Therefore, the inverter is able to adjust the output of active power and reactive power to stabilize grid voltage and grid frequency.
Regarding the control of the inverter, D-Σ digital control avoids conventional abc to qd frame transformation. Consequently, derivation of the plant and control law can be significantly simplified. The controller with D-Σ digital control is designed to eliminate the effects caused by the variation of dc bus voltage, switching frequency, and inductance. D-Σ digital control takes into account the inductance variation. It has the benefits such as allowance of wide inductance variation and reduction of core size and cost. Moreover, an SPWM combined with D-Σ digital control separates a three-phase inverter into three single inverters and reduces complexity of control. Finally, simulated results and experimental results have verified the feasibility of the inverter system.
誌謝 i
摘要 ii
Abstract iii
總目錄 iv
圖目錄 vii
表目錄 xii
第一章 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 2
1-2-1 換流器架構 2
1-2-2 換流器控制方法 5
1-3 論文大綱 8
第二章 系統架構與分切合整數位控制法 9
2-1 系統架構 9
2-2 分切合整數位控制法 10
2-2-1 受控體 11
2-2-2 控制法則 16
2-2-3 電壓型控制 17
2-2-4 電流型控制 22
第三章 系統周邊電路 25
3-1 輔助電源 25
3-2 開關驅動電源 26
3-3 電壓箝位電路 27
3-4 精密全波整流電路 27
3-5 交流電壓回授電路 28
3-6 電感電流回授電路 30
3-7 直流鏈電壓回授電路 31
3-8 直流鏈預充電路 32
3-9 上下臂開關隔離驅動電路 33
3-10 上下電容電壓平衡電路 34
3-11 電網電壓偵測電路 35
3-12 電網隔離電路 36
第四章 韌體規劃 37
4-1 RX62T群組微控制器簡介 37
4-2 主程式流程規劃 40
4-3 A/D中斷副程式流程規劃 41
第五章 實驗結果 44
5-1 換流器規格與元件選用 44
5-2 實務考量 47
5-2-1 電感值變化 47
5-2-2 A/D取樣與PWM輸出設定 49
5-2-3 開關死區補償 50
5-2-4 單獨供應開關驅動電源 52
5-2-5 回授電路濾波電容設計 52
5-3 換流器模擬系統建模 53
5-4 電壓型控制系統模擬與實測波形 54
5-4-1 電阻性負載 55
5-4-2 電感性負載 56
5-4-3 電容性負載 58
5-4-4 不平衡負載 59
5-5 電流型控制系統模擬與實測波形 61
5-5-1 純實功輸出 61
5-5-2 整流充電 64
5-5-3 純虛功補償 66
5-5-4 第一象限 68
5-5-5 第二象限 70
5-5-6 第三象限 72
5-5-7 第四象限 74
5-5-8 負載變動測試 76
5-6 總諧波失真率 77
5-7 損耗分析 78
5-7-1 濾波電感損耗 78
5-7-2 開關元件損耗 81
5-7-3 控制級元件與風扇損耗 84
5-7-4 總損耗與效率 84
第六章 結論與未來研究方向 87
6-1 結論 87
6-2 未來研究方向 88
參考文獻 90
[1] REN21, “Renewables 2015 Global Status Report,” 2015.
[2] T. V. Thang, A. Ahmed, C.-I. Kim, and J.-H. Park, “Flexible System Architecture of Stand-Alone PV Power Generation with Energy Storage Device,” IEEE Trans. on Energy Conversion, vol. 30, no. 4, pp. 1386-1396, Dec. 2015.
[3] S. Lin, M. Han, R. Fan, and X. Hu., “Configuration of Energy Storage System for Distribution Network with High Penetration of PV,” IET Conference on Renewable Power Generation, pp. 1-6, Sep. 2011.
[4] W. Tang and Y. J. A. Zhang, “Optimal Battery Energy Storage System Control in Microgrid with Renewable Energy Generation,” IEEE International Conference on Smart Grid Communications, pp. 846-851, Nov. 2015.
[5] G. Coppez, S. Chowdhury, and S. P. Chowdhury, “The Importance of Energy Storage in Renewable Power Generation: A Review,” Universities Power Engineering Conference, pp. 1-5, Sep. 2010.
[6] D. Franco, R. Gregor, J. Rodas, and D. Gregor, “Power Flux Model-Based Analysis of a Micro-grid Connected PV System with Storage Energy Unit,” Universities Power Engineering Conference, pp. 1-6, Sep. 2015.
[7] B. Jintanasombat and S. Premrudeepreechacharn, “Optimal Analysis of Battery Energy Storage for Reduction of Power Fluctuation from PV System in Mae Hong Son Province,” International Youth Conference, pp. 1-6, May. 2015.
[8] N. Chudoung and S. Sangwongwanich, “A Simple Carrier-Based PWM Method for Three-Phase Four-Leg Inverters Considering All Four Pole Voltages Simultaneously,” International Conference on Power Electronics and Drive Systems, pp. 1020-1027, Nov. 2007.
[9] A. Bellini and S. Bifaretti, “A Simple Control Technique for Three-Phase Four-Leg Inverters,” International Symposium on Power Electronics, Electrical Drives, Automation and Motion, pp. 1143-1148, May. 2006.
[10] E. Ortjohann, A. Mohd, N. Hamsic, and M. Lingemann, “Design and Experimental Investigation of Space Vector Modulation for Three-Leg Four-Wire Voltage Source Inverters,” European Conference on Power Electronics and Applications, pp. 1-6, Sep. 2009.
[11] X. Guo, R. He, J. Jian, Z. Lu, X. Sun, and J. M. Guerrero, “Leakage Current Elimination of Four-Leg Inverter for Transformerless Three-Phase PV System,” IEEE Trans. on Power Electronics, vol. 31, no. 3, pp. 1841-1846, Mar. 2016.
[12] M. V M. Kumar and M. K. Mishra, “A Three-Leg Inverter Based DSTATCOM Topology for Compensating Unbalanced and Nonlinear Loads,” IEEE International Conference on Power Electronics, pp. 1-6, Dec. 2014.
[13] J. D. Kooning, B. Meersman, T. Vandoorn, B. Renders, and L. Vandevelde, “Comparison of Three-Phase Four-Wire Converters for Distributed Generation,” Universities Power Engineering Conference, pp. 1-6, Sep. 2010.
[14] K. H. Ang, G. Chong, and Y. Li, “PID Control System Analysis, Design, and Technology,” IEEE Trans. on Control Systems Technology, vol. 13, no. 4, pp. 559-576, Jul. 2005.
[15] P. R. Ouyang, V. Pano, and T. Dam, “PID Contour Tracking Control in Position Domain,” International Symposium on Industrial Electronics, pp. 1297-1302, May. 2012.
[16] W. Yu and X. Li, “Stable PID Control for Robot Manipulator with Neural Compensation,” IEEE Conference on Decision and Control, pp. 5398-5403, Dec. 2012.
[17] J. D. Li, S. Z. Wei, W. Qiong, and X. Peng, “A Switching-Inverter Power Controller Based on Fuzzy Adaptive PID” IEEE International Forum on Strategic Technology, pp. 695-699, Aug. 2011.
[18] C. Qin, Q. Wang, Q. Chen, G. Li, and C. Hu, “Application of Fuzzy PID with Loss Balancing Control in Three-Level Active NPC Inverter,” IEEE Conference on Industrial Electronics and Applications, pp. 1466-1470, Jun. 2015.
[19] D. Chen, J. Zhang, and Z. Qian, “An Improved Repetitive Control Scheme for Grid-Connected Inverter with Frequency-Adaptive Capability,” IEEE Trans. on Industrial Electronics, vol. 60, no. 2, pp. 814-823, Feb. 2013.
[20] M. Wu, B. Xu, W. Cao, and J. She, “Aperiodic Disturbance Rejection in Repetitive-Control Systems,” IEEE Trans. on Control Systems Technology, vol. 22, no. 3, pp. 1044-1051, May. 2014.
[21] T.-Y. Doh and J. R. Ryoo, “Robust Repetitive Controller Design and Its Application on the Track-Following Control System in Optical Disk Drives,” IEEE Conference on Decision and Control and European Control Conference, pp. 1644-1649, Dec. 2011.
[22] S. Saggini, W. Stefanutti, E. Tedeschi, and P. Mattavelli, “Digital Deadbeat Control Tuning for DC-DC Converters Using Error Correlation,” IEEE Trans. on Power Electronics, vol. 22, no. 4, pp. 1556-1570, Jul. 2007.
[23] P. Yang, N. Chen, and S. Liu, “Research on the Improved Current Deadbeat Control Algorithm of Photovoltaic Grid-Connected Inverter” IEEE Conference on Power Electronics Systems and Applications, pp. 1-3, Jun. 2011.
[24] G. Han, Y. Xia, and W. Min, “Study on the Three-Phase PV Grid-Connected Inverter Based on Deadbeat Control,” IEEE Conference on Power Engineering and Automation Conference, pp. 1-4, Sep. 2012.
[25] M. S. Khireddine, M. Makhloufi, Y. Abdessemed, and A. Boutarafa, “Tracking Power Photovoltaic System with a Fuzzy Logic Strategy,” IEEE International Conference on Computer Science and Information Technology, pp. 42-49, Mar. 2014.
[26] G. R. Yu and J. S. Wei, “Fuzzy Control of a Bi-Directional Inverter with Nonlinear Inductance for DC Microgrids,” IEEE International Conference on Fuzzy Systems, pp. 1941-1945, Jun. 2011.
[27] S. A. Krishna and L. Abraham, “Boost Converter Based Power Factor Correction for Single Phase Rectifier Using Fuzzy Logic Control,” IEEE International Conference on Computational Systems and Communications, pp. 122-126, Dec. 2014.
[28] 吳佳穎,高功率雙向三相四線半橋式轉換器研製,國立清華大學電機工程研究所碩士論文,2015年7月。
[29] 李柏宏,分切合整數位控制之20 kVA三相四線式多功能換流器研製,國立清華大學電機工程研究所碩士論文,2015年7月。
[30] NXP Semiconductors, UC3842 Datasheet, 1994
[31] LEM, HTP 300-P Datasheet
[32] NXP Semiconductors, 74HC244 Datasheet, rev. 4, 2012
[33] TOSHIBA, TLP358 Datasheet, rev. 3, 2015
[34] Renesas Electronics, “RX62T/62G Group Datasheet,“ Jan. 2014.
[35] Chang Sung Corporation (CSC), “Magnetic Powder Cores,” www.changsung.com, ver. 13.
[36] IEEE Std 519-2014, “IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems,” IEEE, pp. 1-29, Jun. 2014.
[37] H.-J. Chen, ”Power Losses of Silicon Carbide MOSFET in HVDC Application,” University of Pittsburgh, 2012
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *