帳號:guest(3.128.204.143)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張鈺君
作者(外文):Chang, Yu-Jiun
論文名稱(中文):電能轉換器架構下的虛擬同步機開發
論文名稱(外文):Development of the Power Converters-based Virtual Synchronous Machine
指導教授(中文):鄭博泰
指導教授(外文):Cheng ,Po-Tai
口試委員(中文):侯中權
謝振中
口試委員(外文):Hou, Chung Chuan
Shieh, Jenn Jong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:103061505
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:43
中文關鍵詞:微電網分散式系統垂降控制虛擬同步機
外文關鍵詞:Microgriddistributed generation systemdroop controlvirtual synchronous machine
相關次數:
  • 推薦推薦:0
  • 點閱點閱:40
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本篇文章提供一個在分散式系統(DGS)中的實功控制方法來解決傳統上的垂
降控制(droop control)所造成的穩定度問題。垂降控制已經廣泛的被使用在分散式不斷電系統中,為分散式系統提供了適當的功率分配法則且無須任何通訊系統來連結各個電能轉換器,但是其快速地暫態響應對系統的穩定度會造成威脅。為了改善此問題,本篇文章提出一個虛擬同步機(VSM)的實功控制方法。這個方法可以讓電能轉換器模擬真實同步機運轉時的動態響應,而同步機的轉動慣量可以改善穩定度的問題。文章內包含詳細的理論描述和實驗驗證來證實此方法的有效性。
This dissertation presents an active power control method for distribute generation system(DGS) to resolve the stability problem of conventional P−f droop control. P−f droop control has been widely discussed in the application of distributed uninterrupted power supplies (UPS) systems. It can make appropriate power sharing of DGS without any communication. But the fast transient response of the control method causes some stability problem. To improve the problem, the virtual synchronous machine-based power control is presented in these paper. These method can make converters to emulate the dynamic response of synchronous machine(SM). The inertia of SM would improve stability of power system. Many detailed description and experiment are presented in the dissertation to confirm the effectiveness of proposed method.
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Dissertation organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2.1 Autonomous power sharing control . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 P − ! droop control and Q − V droop control . . . . . . . . . . . . . . . . . . . . 4
2.3 Power sharing design of P − f droop control . . . . . . . . . . . . . . . . . . . . 6
2.4 Frequency restoration of P − f droop control . . . . . . . . . . . . . . . . . . . . 7
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Virtual Synchronous Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Virtual Synchronous Machine-based power control . . . . . . . . . . . . . . . . . 10
3.2.1 Small signal model of swing equation . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Normalization of swing equation . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.3 SM v.s. VSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 The relation between P − f droop and VSM-based power control . . . . . . . . . 20
4 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1 Implement virtual synchronous machine in a 2-level converter . . . . . . . . . . . 23
4.2 Control block diagram of main controller . . . . . . . . . . . . . . . . . . . . . . 23
4.3 P − f power droop control v.s. VSM-based power control . . . . . . . . . . . . . 27
4.3.1 Case 1 : P − f power droop control . . . . . . . . . . . . . . . . . . . . . 27
4.3.2 Case 2 : VSM-based power droop control . . . . . . . . . . . . . . . . . . 27
4.3.3 Case 3 : P − f power droop control with low pass filter . . . . . . . . . . 28
4.3.4 VSM : The inertia and damping factor test . . . . . . . . . . . . . . . . . 29
4.4 Parallel connection and power sharing issue . . . . . . . . . . . . . . . . . . . . . 30
4.4.1 Case 1 : P − f power droop control is used in these two converters . . . . 31
4.4.2 Case 2 : VSM-based power droop control is used in these two converters . 32
4.4.3 Case 3 : different control methods are used in these two converters . . . . . 34
4.4.4 Case 4 : Different power rating test . . . . . . . . . . . . . . . . . . . . . 35
4.5 Frequency Restoration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5.1 Case 1 : The same power sharing test . . . . . . . . . . . . . . . . . . . . 37
4.5.2 Case 2 : Different power sharing test . . . . . . . . . . . . . . . . . . . . . 38
5 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
APPENDICES
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
[1] R. H. Lasseter, “Microgrids,” in Power Engineering Society Winter Meeting, 2002. IEEE,vol. 1, 2002, pp. 305–308 vol.1.
[2] R. H. Lasseter and P. Paigi, “Microgrid: a conceptual solution,” in Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual, vol. 6, June 2004, pp. 4285–4290 Vol.6.
[3] P. Piagi and R. H. Lasseter, “Autonomous control of microgrids,” in 2006 IEEE Power Engineering Society General Meeting, 2006, pp. 8 pp.–.
[4] K. Kauhaniemi and L. Kumpulainen, “Impact of distributed generation on the protection of distribution networks,” in Developments in Power System Protection, 2004. Eighth IEE International Conference on, vol. 1, April 2004, pp. 315–318 Vol.1.
[5] J. Driesen and K. Visscher, “Virtual synchronous generators,” in Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE, July 2008, pp. 1–3.
[6] P. F. Frack, R. W. D. Doncker, P. E. Mercado, and M. G. Molina, “Emulation of synchronous machine for frequency stability improvement inmicrogrids,” in 2015 IEEE 11th International Conference on Power Electronics and Drive Systems, June 2015, pp. 59–66.
[7] Q. C. Zhong and G. Weiss, “Synchronverters: Inverters that mimic synchronous generators,”IEEE Transactions on Industrial Electronics, vol. 58, no. 4, pp. 1259–1267, April 2011.
[8] M. C. Chandrokar, D. M. Divan, and B. Banerjee, “Control of distributed ups systems,” in Power Electronics Specialists Conference, PESC ’94 Record., 25th Annual IEEE, Jun 1994, pp. 197–204 vol.1.
[9] H. Akagi, E. H. Watanabe, and M. Aredes, Instantaneous power theory and applications to power conditioning. John Wiley & Sons, 2007, vol. 31.
[10] A. Bergen and V. Vittal, Power Systems Analysis. Pearson/Prentice Hall, 2000.
[11] M. C. Chandorkar, D. M. Divan, and R. Adapa, “Control of parallel connected inverters in standalone ac supply systems,” IEEE Transactions on Industry Applications, vol. 29, no. 1, pp. 136–143, Jan 1993.
[12] S. D’Arco and J. A. Suul, “Equivalence of virtual synchronous machines and frequency droops for converter
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *