|
[1] J.-S. Hwang, D.-C. Chan, J.-F. Chen, T.-T. Cheng, C.-H. Wu, Y.-K. Soong, K.-S. Tsai, R.-S. Yang, Clinical practice guidelines for the prevention and treatment of osteoporosis in Taiwan: summary, Journal of Bone and Mineral Metabolism, 32 (2014) 10-16. [2] S. Ferrari, M.L. Bianchi, J.A. Eisman, A.J. Foldes, S. Adami, D.A. Wahl, J.J. Stepan, M.C. de Vernejoul, J.M. Kaufman, Osteoporosis in young adults: pathophysiology, diagnosis, and management, Osteoporosis International, 23 (2012) 2735-2748. [3] G. Duque, B.R. Troen, Understanding the Mechanisms of Senile Osteoporosis: New Facts for a Major Geriatric Syndrome, Journal of the American Geriatrics Society, 56 (2008) 935-941. [4] J. Aguirre, L. Buttery, M. O’Shaughnessy, F. Afzal, I. Fernandez de Marticorena, M. Hukkanen, P. Huang, I. MacIntyre, J. Polak, Endothelial Nitric Oxide Synthase Gene-Deficient Mice Demonstrate Marked Retardation in Postnatal Bone Formation, Reduced Bone Volume, and Defects in Osteoblast Maturation and Activity, The American Journal of Pathology, 158 (2001) 247-257. [5] C. Nathan, Q.W. Xie, Nitric oxide synthases: roles, tolls, and controls, Cell, 78 (1994) 915-918. [6] J. Klein Nulend, R.F.M. van Oers, A.D. Bakker, R.G. Bacabac, Nitric oxide signaling in mechanical adaptation of bone, Osteoporosis International, 25 (2013) 1427. [7] S.J. Wimalawansa, Nitric oxide and bone, Annals of the New York Academy of Sciences, 1192 (2010) 391-403. [8] H. Kalyanaraman, G. Ramdani, J. Joshua, N. Schall, G.R. Boss, E. Cory, R.L. Sah, D.E. Casteel, R.B. Pilz, A Novel, Direct NO donor Regulates Osteoblast and Osteoclast Functions and Increases Bone Mass in Ovariectomized Mice, Journal of Bone and Mineral Research, 32 (2016) 46-59. [9] S.P. Nichols, W.L. Storm, A. Koh, M.H. Schoenfisch, Local delivery of nitric oxide: Targeted delivery of therapeutics to bone and connective tissues, Advanced Drug Delivery Reviews, 64 (2012) 1177-1188. [10] S.J. Wimalawansa, Rationale for Using Nitric Oxide donor Therapy for Prevention of Bone Loss and Treatment of Osteoporosis in Humans, Annals of the New York Academy of Sciences, 1117 (2007) 283-297. [11] L. Lim, L. Hoeksema, K. Sherin, Screening for Osteoporosis in the Adult U.S. Population, American journal of preventive medicine, 36 (2009) 366-375. [12] P. Agrawal, A. Agarwal, O. Singh, M. Bansal, Topical Nitroglycerin: A New and Safe Treatment Option for Osteoporosis, Journal of SAFOMS, 2 (2014) 20. [13] J.D. Parker, Nitrate tolerance, oxidative stress, and mitochondrial function: another worrisome chapter on the effects of organic nitrates, The Journal of Clinical Investigation, 113 (2004) 352-354. [14] A.J. Thompson, P.K. Mander, G.C. Brown, The NO donor DETA-NONOate reversibly activates an inward current in neurones and is not mediated by the released nitric oxide, British Journal of Pharmacology, 158 (2009) 1338-1343. [15] L. Mancini, N. Moradi-Bidhendi, L. Becherini, V. Martineti, I. MacIntyre, The Biphasic Effects of Nitric Oxide in Primary Rat Osteoblasts Are cGMP Dependent, Biochemical and Biophysical Research Communications, 274 (2000) 477-481. [16] R.-M. Chen, H.-C. Liu, Y.-L. Lin, W.-C. Jean, J.-S. Chen, J.-H. Wang, Nitric oxide induces osteoblast apoptosis through the de novo synthesis of Bax protein, Journal of Orthopaedic Research, 20 (2002) 295-302. [17] P.D. Damoulis, P.V. Hauschka, Nitric Oxide Acts in Conjunction with Proinflammatory Cytokines to Promote Cell Death in Osteoblasts, Journal of Bone and Mineral Research, 12 (1997) 412-422. [18] S.H. Ralston, The Michael Mason Prize Essay 1997. Nitric oxide and bone: what a gas!, British journal of rheumatology, 36 (1997) 831-838. [19] J.S. Beckman, W.H. Koppenol, Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly, American Journal of Physiology, 271 (1996) 1424-1437. [20] K. Vrancken, H. Schroeder, L. Longo, G. Power, A. Blood, Role of ceruloplasmin in nitric oxide metabolism in plasma of humans and sheep: a comparison of adults and fetuses, American journal of physiology. Regulatory, integrative and comparative physiology, 305 (2013) R1401-R1410. [21] J.O. Lundberg, E. Weitzberg, M.T. Gladwin, The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics, Nat Rev Drug Discov, 7 (2008) 156-167. [22] P. Piscitellia, Osteoporosis and cardiovascular diseases’ cosegregation: epidemiological features, Clinical cases in mineral and bone metabolism, 5 (2008) 14. [23] B. Abrahamsen, E.L. Grove, P. Vestergaard, Nationwide registry-based analysis of cardiovascular risk factors and adverse outcomes in patients treated with strontium ranelate, Osteoporosis International, 25 (2014) 757-762. [24] C. Cooper, K.M. Fox, J.S. Borer, Ischaemic cardiac events and use of strontium ranelate in postmenopausal osteoporosis: a nested case–control study in the CPRD, Osteoporosis International, 25 (2014) 737-745. [25] T. Namani, P. Walde, From Decanoate Micelles to Decanoic Acid/Dodecylbenzenesulfonate Vesicles, Langmuir, 21 (2005) 6210-6219. [26] E.-J. Park, S.A. Kim, Y.-M. Choi, H.-K. Kwon, W. Shim, G. Lee, S. Choi, Capric Acid Inhibits NO Production and STAT3 Activation during LPS-Induced Osteoclastogenesis, PLoS ONE, 6 (2011) e27739. [27] T.P. Kasten, P. Collin-Osdoby, N. Patel, P. Osdoby, M. Krukowski, T.P. Misko, S.L. Settle, M.G. Currie, G.A. Nickols, Potentiation of osteoclast bone-resorption activity by inhibition of nitric oxide synthase, Proceedings of the National Academy of Sciences, 91 (1994) 3569-3573. [28] Y. Wittrant, S. Theoleyre, S. Couillaud, C. Dunstan, D. Heymann, F. Rédini, Relevance of an in vitro osteoclastogenesis system to study receptor activator of NF-kB ligand and osteoprotegerin biological activities, Experimental Cell Research, 293 (2004) 292-301.
|