帳號:guest(18.216.102.157)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李思瑩
作者(外文):Li, Szu Ying
論文名稱(中文):利用單層奈米粒子陣列開發低成本生醫感測平台及臨床快速診斷之應用
論文名稱(外文):Use of Metal Nanostructure Arrays to Develop PET-based Biosensors for Rapid Point-of-care Diagnosis Device
指導教授(中文):萬德輝
指導教授(外文):Wan, De hui
口試委員(中文):鄭兆珉
張晃猷
口試委員(外文):Cheng, Chao Min
Chang, Hwan You
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物醫學工程研究所
學號:103038513
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:68
中文關鍵詞:生醫感測器過氧化氫檢測膽固醇檢測
外文關鍵詞:biosensordetection of H2O2detection of cholesterol
相關次數:
  • 推薦推薦:0
  • 點閱點閱:45
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文研究目的為利用中空金屬奈米粒子開發新型生醫感測器,並應用於過氧化氫之檢測。一準確且快速檢測過氧化氫的系統在眾多領域當中皆相當重要,且應用極其廣泛,包括臨床診斷、生物分析及食品安全。而過氧化氫亦是許多酵素反應中的副產物,舉例來說,透過葡萄糖氧化酶的催化,葡萄糖可被氧化形成葡萄糖酸並產生過氧化氫。至今,已開發許多檢測過氧化氫的方法,如分光光度檢測法、電化學法、螢光光度計等。然而,這些技術皆需具備複雜、精密且昂貴的儀器,無法進行就地檢測甚至回饋於開發中國家或落後地區。因此,針對過氧化氫的檢測需求及其應用,開發便宜、快速、攜帶方便且容易使用的檢測系統成為一新穎的研究目標。
在本研究中,透過合成不同中空貴金屬奈米粒子並使其自組裝於高分子基板上,並開發兩種方法以檢測過氧化氫。第一部分使用中空銀鈀奈米粒子,運用鈀獨特的催化特性,將其製備為中空結構以增加具活性之表面積,透過自組裝在聚對苯二甲酸乙二酯 (Polyethylene terephthalate, PET) 基板上排成單層奈米粒子陣列,以此催化過氧化氫與2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) 之氧化還原反應,藉由觀察ABTS 之顏色變化以檢測過氧化氫,並探討於不同反應條件及環境中,中空銀鈀奈米粒子的催化活性。驗證中空銀鈀奈米粒子於酸性下具仿生過氧化酶的特性,反應可於30 分鐘內達飽和,且能在室溫下進行反應。接著以動力學分析比較中空銀鈀奈米粒子與天然酵素辣根過氧化酶 (Horseradish peroxidase, HRP) 之催化活性,發現本研究中所製備的中空銀鈀奈米粒子催化活性與HRP 相近,且線性範圍相當寬廣,落於5 mM~500 mM 之間。最後將中空銀鈀奈米粒子自組裝於PET 基板上,並成功於基板上進行過氧化氫的檢測,線性範圍為2 mM~10 mM,亦可以肉眼觀察到明顯的顏色變化,進而透過比色法輕易的判別過氧化氫濃度。
第二 部分中,製備吸收波段位於500 nm 附近之中空銀金奈米粒子,活用過氧化氫的強氧化特性,使得含銀量偏高的中空銀金奈米粒子,與過氧化氫產生氧化還原反應,並以紫外-可見光光譜儀與穿透式電子顯微鏡驗證奈米粒子與不同含量過氧化氫反應後,結構及光譜的改變。銀氧化形成銀離子並增添中空銀金奈米粒子之結構孔洞性,而結構的改變促使奈米粒子在吸收波段產生紅移並改變其顏色,因此得以觀測不同顏色來監測過氧化氫濃度 ,接著探討在各環境下中空銀金奈米粒子與過氧化氫的氧化還原能力。成功驗證中空銀金奈米粒子於過氧化氫檢測的可行性後,將奈米粒子自組裝於PET 基板,製備PET 檢測試片,並測試此基板上的氧化還原反應可於室溫且中性環境下進行,而反應於30 分鐘達飽和,接著以三原色分析 (分別為紅色―Red、綠色―Green、藍色―Blue,RGB) 建立過氧化氫檢量線,線性範圍為 5 µM~50 µM 之間,而偵測極限為4.3 µM。接著再將中空銀金奈米粒檢測試片與特定酵素結合進行生物標的物的檢測 (如葡萄糖、尿酸及膽固醇等),而本研究中,已成功進行膽固醇的檢測,並以RGB 分析製備膽固醇檢量線,線性範圍為 10 µM~50 µM 之間,且偵測極限可達6.0 µM。於此檢測平台進行生物標的物分析時,因顯著的顏色變化,而可以比色法輕易的判別生物標的物濃度 (如本實驗中所進行的膽固醇檢測)。未來期望將此生醫感測器推廣至更多生物標的物的濃度監測,甚至於實際樣品 (如尿液或血液) 或病人的血清。
The accurate and rapid determination of hydrogen peroxide (H2O2) is of great importance in many applications such as clinical diagnosis, bioanalysis, and food safety. Moreover, H2O2 is a side product of specific enzymatic reactions. For instance, glucose could be oxidized to produce gluconic acid and H2O2 in the presence of glucose oxidase (GOx). Up until now, there have already been many methods to detect H2O2, including spectrophotometry, electroanalysis, and fluorometry. However, these techniques require expensive or sophisticated instruments. Therefore, rapid and easy ways of H2O2 sensing are necessary.
In this thesis, we have developed two systems to detect H2O2 without any complicated equipment. Both of them are simple, low cost, and disposable. Most importantly, we could distinguish the color change by the naked eye. By these advantages, the sensor could be applied to develop point-of-care (POC) and clinical diagnosis platforms. The intrinsic catalytic ability of palladium in many specific reactions has been confirmed. Herein, our first system utilizes the enzymatic approach by using hollow silver/palladium nanostructures (Ag/Pd NSs) to replace commercial enzyme, Horseradish peroxidase (HRP), to catalyze the oxidization of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) by H2O2. By calculation of many kinetic constants from enzyme kinetics, we compared the catalytic activity of Ag/Pd NSs with HRP. Proved that the Ag/Pd NSs has high catalytic activity and similar results to HRP. We also did the catalytic reaction in different reaction conditions such as temperature, pH value and reaction time. The most suitable reaction conditions were under room temperature, acidic condition (pH=4.6) and 10 min in solution. Then, we have successfully immobilized a nanoparticle array onto the commercial polymer substrate, polyethylene terephthalate (PET), via a wet-chemical method. By mixing H2O2 with ABTS in an acetic buffer (pH=4.6) with the Ag/Pd NSs-coated PET sensing system, we could observe the increase in darkness of green color upon increasing H2O2 concentration by the naked eye. The high catalytic activity of Ag/Pd NSs might be attributed to the hollow structure (large surface area) and the intrinsic catalytic ability of palladium. The linear relationship was from 5 mM to 500 mM in solution-based test and 2 mM to 10 mM in PET-based detection system.
In another system, we immobilized hollow silver/gold nanostructures (Ag/Au NSs) onto PET substrates, similar to the first system. The detection process could be performed by directly dropping the H2O2 solution onto the Ag/Au NSs-coated PET sensing system, without any organic dyes. Because of the strong oxidizing ability of H2O2, the silver atoms in the Ag/Au NSs would be oxidized to silver ions and the Ag/Au NSs would transform to a more porous structure. Owing to the changes in structure and composition, the localized surface plasmon resonance (LSPR) peak of Ag/Au NSs would continuously shift to longer wavelength (red shift) and different colors would be obtained at various H2O2 concentrations, visible by the naked eye. We could successful detect the H2O2 under room temperature and neutral condition (pH 7.0) in 30 min. We obtained narrow linear range but low detection limit, 5 µM to 50 µM and 4.3 µM respectively. Finally, the Ag/Au NSs-based platforms could be utilized for clinical diagnosis, such as glucose, cholesterol or uric acid sensing. In this study, we have successfully combined the cholesterol oxidase to develop cholesterol sensing. The linear range was from 10 µM to 50 µM. The detection limit was low as 6.0 µM.
An overview of the two efficient sensing platforms, the second one shows lower detection limit but narrow linear range than first one. In the future, the applications of the sensing systems could extend to other fields that relate to H2O2.
目錄
致謝 I
中文摘要 II
Abstract IV
圖目錄 VI
表目錄 IX
第一章 序論 1
1.1 前言 1
1.2 論文架構 2
第二章 文獻回顧 3
2.1 過氧化氫與檢測 3
2.1.1 過氧化氫的應用 3
2.1.2酵素免疫分析法 (Enzyme-linked immunosorbent assay, ELISA) 4
2.1.3 無機材料檢測方法 5
2.2 金屬奈米粒子的簡介 7
2.2.1 實心金屬奈米粒子合成 7
2.2.2 中空金屬奈米粒子合成 9
2.2.3 金屬奈米粒子之侷域性表面電漿共振特性 (Localized surface plasmon resonance, LSPR) 12
2.2.4 金屬奈米粒子特殊催化性質與應用 14
2.2.5 金屬奈米粒子光學性質於生醫感測領域之應用 17
2.3 金屬奈米粒子與酵素的結合於疾病檢測之應用 18
2.3.1 葡萄糖 19
2.3.2 膽固醇 20
2.4 製備金屬奈米粒子陣列與方法 21
2.4.1金屬奈米粒子陣列於矽和玻璃基板 22
2.4.2 金屬奈米粒子陣列於紙基材 23
2.4.3 金屬奈米粒子陣列於高分子基板 24
第三章 結合高分子基板與金屬奈米粒子催化特性於過氧化氫檢測 26
3.1 研究目的 26
3.2 實驗 26
3.2.1實驗方法 27
3.3 研究結果與討論 31
3.2.1 中空銀鈀奈米粒子之形貌探討 31
3.2.2 中空銀鈀奈米粒子之光學性質 33
3.2.3 中空銀鈀奈米粒子之催化性質 34
3.2.4 中空銀鈀奈米粒子於不同環境之催化活性驗證 35
3.2.5 中空銀鈀奈米粒子之動力學分析 37
表3.1 催化活性比較。 39
3.2.6 中空銀鈀奈米粒子於過氧化氫之檢測 39
3.2.7 中空銀鈀奈米粒子檢測試片於過氧化氫之檢測 40
第四章 結合高分子基板與金屬奈米粒子氧化還原性質於過氧化氫檢測 43
4.1 研究目的 43
4.2 實驗 43
4.2.1 實驗方法 44
4.3 實驗結果與討論 47
4.3.1 中空銀金奈米粒子之形貌探討 48
4.3.2 中空銀金奈米粒子之光學性質探討 49
4.3.3 中空銀金奈米粒子與過氧化氫於水溶液中之氧化還原 50
4.3.4 中空銀金奈米粒子與過氧化氫於基板上之氧化還原 51
表4.1 不同LSPR 中空銀金奈米粒子與H2O2 反應前後之特徵吸收峰波谷位置差值。 52
4.3.5 中空銀金奈米粒子檢測試片於過氧化氫之檢測 56
4.3.6 中空銀金奈米粒子檢測平台於膽固醇之檢測 57
第五章 總結 59
參考文獻 60

參考文獻
[1] Choi JH, Kim HS, Choi J-W, Hong JW, Kim Y-K, Oh B-K. A novel Au-nanoparticle biosensor for the rapid and simple detection of PSA using a sequence-specific peptide cleavage reaction. Biosensors and Bioelectronics. 2013;49:415-9.
[2] Liang M, Fan K, Pan Y, Jiang H, Wang F, Yang D, et al. Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent. Analytical chemistry. 2012;85:308-12.
[3] Wang C, Zhang H, Zeng D, San L, Mi X. DNA Nanotechnology Mediated Gold Nanoparticle Conjugates and Their Applications in Biomedicine. Chinese J Chem. 2016;34:299-307.
[4] Kuppusamy P, Mashitah MY, Maniam GP, Govindan N. Biosynthesized gold nanoparticle developed as a tool for detection of HCG hormone in pregnant women urine sample. Asian Pacific Journal of Tropical Disease. 2014;4:237.
[5] 食品添加物使用範圍及限量暨規格標準 第二條 各類食品添加物之品名、使用範圍及限量. 食品藥物管理局 (TFDA). 2013.
[6] Mazzio EA, Soliman KFA. Glioma cell antioxidant capacity relative to reactive oxygen species produced by dopamine. J Appl Toxicol. 2004;24:99-106.
[7] Long LH, Evans PJ, Halliwell B. Hydrogen peroxide in human urine: Implications for antioxidant defense and redox regulation. Biochem Bioph Res Co. 1999;262:605-9.
[8] Dixon SJ, Stockwell BR. The role of iron and reactive oxygen species in cell death. Nature Chemical Biology. 2014;10:9-17.
[9] Shan CS, Yang HF, Song JF, Han DX, Ivaska A, Niu L. Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene. Analytical chemistry. 2009;81:2378-82.
[10] Nakaminami T, Ito S, Kuwabata S, Yoneyama H. Uricase-catalyzed oxidation of uric acid using an artificial electron acceptor and fabrication of amperometric uric acid sensors with use of a redox ladder polymer. Analytical chemistry. 1999;71:1928-34.
[11] Chang HC, Ho JAA. Gold Nanocluster-Assisted Fluorescent Detection for Hydrogen Peroxide and Cholesterol Based on the Inner Filter Effect of Gold Nanoparticles. Analytical chemistry. 2015;87:10362-7.
[12] Liu QY, Yang YT, Li H, Zhu RR, Shao Q, Yang SG, et al. NiO nanoparticles modified with 5,10,15,20-tetrakis(4-carboxyl pheyl)-porphyrin: Promising peroxidase mimetics for H2O2 and glucose detection. Biosens Bioelectron. 2015;64:147-53.
[13] Dodeigne C, Thunus L, Lejeune R. Chemiluminescence as a diagnostic tool. A review. Talanta. 2000;51:415-39.
[14] Wang J, Musameh M. Carbon nanotube/teflon composite electrochemical sensors and biosensors. Analytical chemistry. 2003;75:2075-9.
[15] Pinkernell U, Effkemann S, Karst U. Simultaneous HPLC determination of peroxyacetic acid and hydrogen peroxide. Analytical chemistry. 1997;69:3623-7.
[16] NAKASHIMA K, KAWAGUCHI S, GIVENS RS, AKIYAMA S. Photographic detection of hydrogen peroxide and glucose by peroxyoxalate chemiluminescence. Analytical sciences. 1990;6:833-6.
[17] Chaudhary N. Experimental Biotechnology, Module 5, Lecture 30: ELISA-Web course.
[18] Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2:577-83.
[19] Wei H, Wang E. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Analytical chemistry. 2008;80:2250-4.
[20] Mu JS, Wang Y, Zhao M, Zhang L. Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem Commun. 2012;48:2540-2.
[21] Chen W, Chen J, Liu AL, Wang LM, Li GW, Lin XH. Peroxidase-Like Activity of Cupric Oxide Nanoparticle. Chemcatchem. 2011;3:1151-4.
[22] Xu C, Qu XG. Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. Npg Asia Mater. 2014;6.
[23] Andre R, Natalio F, Humanes M, Leppin J, Heinze K, Wever R, et al. V2O5 Nanowires with an Intrinsic Peroxidase-Like Activity. Adv Funct Mater. 2011;21:501-9.
[24] Luo WJ, Zhu CF, Su S, Li D, He Y, Huang Q, et al. Self-Catalyzed, Self-Limiting Growth of Glucose Oxidase-Mimicking Gold Nanoparticles. Acs Nano. 2010;4:7451-8.
[25] Goldstein AN, Echer CM, Alivisatos AP. Melting in Semiconductor Nanocrystals. Science. 1992;256:1425-7.
[26] Tolbert SH, Alivisatos AP. High-Pressure Structural Transformations in Semiconductor Nanocrystals. Annu Rev Phys Chem. 1995;46:595-625.
[27] Horvath J, Birringer R, Gleiter H. Diffusion in Nanocrystalline Material. Solid State Commun. 1987;62:319-22.
[28] Qin XY, Wu BM, Du YL, Zhang LD, Tang HX. An experimental study on thermal diffusivity of nanocrystalline Ag. Nanostruct Mater. 1996;7:383-91.
[29] Sarkas HW, Arnold ST, Hendricks JH, Kidder LH, Jones CA, Bowen KH. An Investigation of Catalytic Activity in Mixed-Metal Oxide Nanophase Materials. Z Phys D Atom Mol Cl. 1993;26:46-50.
[30] Hsieh Y-C, Zhang Y, Su D, Volkov V, Si R, Wu L, et al. Ordered bilayer ruthenium–platinum core-shell nanoparticles as carbon monoxide-tolerant fuel cell catalysts. Nature communications. 2013;4.
[31] Manzano M, Vizzini P, Jia K, Adam P-M, Ionescu RE. Development of localized surface plasmon resonance biosensors for the detection of Brettanomyces bruxellensis in wine. Sensors and Actuators B: Chemical. 2016;223:295-300.
[32] Iravani S, Korbekandi H, Mirmohammadi S, Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in pharmaceutical sciences. 2014;9:385.
[33] Mafune F, Kohno J, Takeda Y, Kondow T, Sawabe H. Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B. 2000;104:8333-7.
[34] Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society. 1951;11:55-75.
[35] Zhang QA, Li WY, Moran C, Zeng J, Chen JY, Wen LP, et al. Seed-Mediated Synthesis of Ag Nanocubes with Controllable Edge Lengths in the Range of 30-200 nm and Comparison of Their Optical Properties. J Am Chem Soc. 2010;132:11372-8.
[36] Kim S-W, Kim M, Lee WY, Hyeon T. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions. J Am Chem Soc. 2002;124:7642-3.
[37] Sun Y, Mayers BT, Xia Y. Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett. 2002;2:481-5.
[38] Chen J, Wiley B, McLellan J, Xiong Y, Li Z-Y, Xia Y. Optical properties of Pd-Ag and Pt-Ag nanoboxes synthesized via galvanic replacement reactions. Nano Lett. 2005;5:2058-62.
[39] Liang H-P, Wan L-J, Bai C-L, Jiang L. Gold hollow nanospheres: tunable surface plasmon resonance controlled by interior-cavity sizes. The Journal of Physical Chemistry B. 2005;109:7795-800.
[40] Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B. 2003;107:668-77.
[41] Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science. 1997;277:1078-81.
[42] Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. Biosensing with plasmonic nanosensors. Nat Mater. 2008;7:442-53.
[43] Wang S, Chen W, Liu AL, Hong L, Deng HH, Lin XH. Comparison of the Peroxidase-Like Activity of Unmodified, Amino-Modified, and Citrate-Capped Gold Nanoparticles. Chemphyschem : a European journal of chemical physics and physical chemistry. 2012;13:1199-204.
[44] Jv Y, Li BX, Cao R. Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun. 2010;46:8017-9.
[45] Wu GW, He SB, Peng HP, Deng HH, Liu AL, Lin XH, et al. Citrate-Capped Platinum Nanoparticle as a Smart Probe for Ultrasensitive Mercury Sensing. Analytical chemistry. 2014;86:10955-60.
[46] Chen C, Nan CY, Wang DS, Su QA, Duan HH, Liu XW, et al. Mesoporous Multicomponent Nanocomposite Colloidal Spheres: Ideal High-Temperature Stable Model Catalysts. Angew Chem Int Edit. 2011;50:3725-9.
[47] Zhao KF, Qiao BT, Wang JH, Zhang YJ, Zhang T. A highly active and sintering-resistant Au/FeOx-hydroxyapatite catalyst for CO oxidation. Chem Commun. 2011;47:1779-81.
[48] Feng JT, Ma C, Miedziak PJ, Edwards JK, Brett GL, Li DQ, et al. Au-Pd nanoalloys supported on Mg-Al mixed metal oxides as a multifunctional catalyst for solvent-free oxidation of benzyl alcohol. Dalton T. 2013;42:14498-508.
[49] Zhang Q, Lee I, Joo JB, Zaera F, Yin YD. Core-Shell Nanostructured Catalysts. Accounts Chem Res. 2013;46:1816-24.
[50] Tsuji M, Takemura K, Shiraishi C, Ikedo K, Uto K, Yajima A, et al. Syntheses of Au@ PdAg and Au@ PdAg@ Ag Core–Shell Nanorods through Distortion-Induced Alloying between Pd Shells and Ag Atoms over Au Nanorods. The Journal of Physical Chemistry C. 2015;119:10811-23.
[51] Chen YJ, Cao HY, Shi WB, Liu H, Huang YM. Fe-Co bimetallic alloy nanoparticles as a highly active peroxidase mimetic and its application in biosensing. Chem Commun. 2013;49:5013-5.
[52] Wang Q, Zhang L, Shang C, Zhang Z, Dong S. Triple-enzyme mimetic activity of nickel–palladium hollow nanoparticles and their application in colorimetric biosensing of glucose. Chem Commun. 2016;52:5410-3.
[53] Li JN, Liu WQ, Wu XC, Gao XF. Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials. 2015;48:37-44.
[54] Radhakumary C, Sreenivasan K. Naked Eye Detection of Glucose in Urine Using Glucose Oxidase Immobilized Gold Nanoparticles. Analytical chemistry. 2011;83:2829-33.
[55] Zhang Q, Cobley CM, Zeng J, Wen LP, Chen JY, Xia YN. Dissolving Ag from Au-Ag Alloy Nanoboxes with H2O2: A Method for Both Tailoring the Optical Properties and Measuring the H2O2 Concentration. J Phys Chem C. 2010;114:6396-400.
[56] Chawla S, Pundir CS. An electrochemical biosensor for fructosyl valine for glycosylated hemoglobin detection based on core-shell magnetic bionanoparticles modified gold electrode. Biosens Bioelectron. 2011;26:3438-43.
[57] Shi WJ, Fan H, Ai SY, Zhu LS. Honeycomb-like nitrogen-doped porous carbon supporting Pt nanoparticles as enzyme mimic for colorimetric detection of cholesterol. Sensor Actuat B-Chem. 2015;221:1515-22.
[58] He SB, Wu GW, Deng HH, Liu AL, Lin XH, Xia XH, et al. Choline and acetylcholine detection based on peroxidase-like activity and protein antifouling property of platinum nanoparticles in bovine serum albumin scaffold. Biosens Bioelectron. 2014;62:331-6.
[59] Lang QL, Yin L, Shi JG, Li L, Xia L, Liu AH. Co-immobilization of glucoamylase and glucose oxidase for electrochemical sequential enzyme electrode for starch biosensor and biofuel cell. Biosens Bioelectron. 2014;51:158-63.
[60] Xia Y, Ye J, Tan K, Wang J, Yang G. Colorimetric visualization of glucose at the submicromole level in serum by a homogenous silver nanoprism–glucose oxidase system. Analytical chemistry. 2013;85:6241-7.
[61] Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical chemistry. 1972;18:499-502.
[62] Aravamudhan S, Ramgir NS, Bhansah S. Electrochemical biosensor for targeted detection in blood using aligned Au nanowires. Sensor Actuat B-Chem. 2007;127:29-35.
[63] Devadoss A, Burgess JD. Steady-state detection of cholesterol contained in the plasma membrane of a single cell using lipid bilayer-modified microelectrodes incorporating cholesterol oxidase. J Am Chem Soc. 2004;126:10214-5.
[64] Batra N, Tomar M, Gupta V. ZnO–CuO composite matrix based reagentless biosensor for detection of total cholesterol. Biosensors and Bioelectronics. 2015;67:263-71.
[65] Zhu L, Xu L, Tan L, Tan H, Yang S, Yao S. Direct electrochemistry of cholesterol oxidase immobilized on gold nanoparticles-decorated multiwalled carbon nanotubes and cholesterol sensing. Talanta. 2013;106:192-9.
[66] Zhang X, Wei M, Lv B, Liu Y, Liu X, Wei W. Sensitive colorimetric detection of glucose and cholesterol by using Au@ Ag core–shell nanoparticles. Rsc Adv. 2016;6:35001-7.
[67] Lin T, Zhong L, Song Z, Guo L, Wu H, Guo Q, et al. Visual detection of blood glucose based on peroxidase-like activity of WS 2 nanosheets. Biosensors and Bioelectronics. 2014;62:302-7.
[68] Zopes D, von Hagen R, Muller R, Fiz R, Mathur S. Ink-jetable patterning of metal-catalysts for regioselective growth of nanowires. Nanoscale. 2010;2:2091-5.
[69] Su Q, Ma X, Dong J, Jiang C, Qian W. A reproducible SERS substrate based on electrostatically assisted APTES-functionalized surface-assembly of gold nanostars. Acs Appl Mater Inter. 2011;3:1873-9.
[70] Yu WW, White IM. Inkjet printed surface enhanced Raman spectroscopy array on cellulose paper. Analytical chemistry. 2010;82:9626-30.
[71] Wan D, Chen HL, Lai YT, Yu CC, Lin KF. Use of reversal nanoimprinting of nanoparticles to prepare flexible waveguide sensors exhibiting enhanced scattering of the surface plasmon resonance. Adv Funct Mater. 2010;20:1742-9.
[72] Ma M, Zhang Y, Gu N. Peroxidase-like catalytic activity of cubic Pt nanocrystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2011;373:6-10.
[73] He W, Zhou Y-T, Wamer WG, Hu X, Wu X, Zheng Z, et al. Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials. 2013;34:765-73.
[74] He W, Wu X, Liu J, Hu X, Zhang K, Hou S, et al. Design of AgM bimetallic alloy nanostructures (M= Au, Pd, Pt) with tunable morphology and peroxidase-like activity. Chemistry of Materials. 2010;22:2988-94.
[75] Wei JP, Chen XL, Shi SG, Mo SG, Zheng NF. An investigation of the mimetic enzyme activity of two-dimensional Pd-based nanostructures. Nanoscale. 2015;7:19018-26.
[76] Chen XM, Su BY, Cai ZX, Chen X, Oyama M. PtPd nanodendrites supported on graphene nanosheets: A peroxidase-like catalyst for colorimetric detection of H2O2. Sensor Actuat B-Chem. 2014;201:286-92.

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *