帳號:guest(18.226.170.41)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱怡瑄
作者(外文):Chiu, Yi Hsuan
論文名稱(中文):口服胰島素治療糖尿病鼠研究:SDS架構之自我組裝氣泡型載體的安全性與投遞效能探討
論文名稱(外文):Self-Assembling Bubble Carriers Stabilized with SDS for Oral Delivery of Insulin to Treat Diabetic Rats: Safety and Efficacy Studies
指導教授(中文):宋信文
指導教授(外文):Sung, Hsing Wen
口試委員(中文):黃效民
張燕
胡宇方
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物醫學工程研究所
學號:103038503
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:53
中文關鍵詞:口服胰島素傳遞有效性安全性
外文關鍵詞:oral insulin deliverysodium dodecyl sulfateefficacysafety
相關次數:
  • 推薦推薦:0
  • 點閱點閱:78
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
基於維持藥物活性,臨床上蛋白質藥物劑型多為針劑注射,若能開發口服劑型,將有效提升病人服藥接受度及便利性。本實驗室先前研發一自我組裝氣泡型奈米載體,將界面活性劑sodium dodecyl sulfate (SDS)、螯合劑diethylenetriaminepentaacetic acid (DTPA) dianhydride、產氣材料sodium bicarbonate (SBC)及蛋白質藥物胰島素混合裝填於酸鹼應答的腸溶衣膠囊,應用於口服胰島素傳遞。然而,SDS作為吸收增進劑是否對腸道造成損害,以及增加腸道菌內毒素侵入,一直是這個新型載體系統尚未驗證之疑慮。本研究將針對SDS的劑量調整,根據不同配方的氣泡型載體做特性分析、傳遞效率比較和毒性探討,以探析自我組裝氣泡型奈米載體之最適SDS劑量。經由載體分析、體外試驗和動物體內試驗都應證隨著SDS的劑量增加,載藥率、載體穩定度、腸道的藥物通透性皆有顯著提升;毒性方面,腸道無局部損傷也無內毒素入侵的憂慮,然而長期服用高劑量組別會有慢性毒性的疑慮,因此權衡安全性與藥物傳遞效能考量,採用中劑量SDS為載體最適劑量。經過糖尿病大鼠實驗證實,本載體系統確實能安全且成功自口服路徑投遞胰島素進入血液循環,達血糖平衡的功效,為一具前瞻性之口服蛋白質藥物傳遞平台。
In clinical, to maintain the bioavailability of protein drugs, most of them are delivered through the injection route. Therefore, development of a system that can apply protein drugs via oral route may highly improve patient compliance. Recently, we reported a self-assembling bubble carrier system which was prepared by mixing a surfactant (sodium dodecyl sulfate; SDS), diethylene triamine pentaacetic acid (DTPA) dianhydride, and a foaming agent (sodium bicarbonate; SBC) for oral insulin delivery. However, using SDS as an absorption enhancer has been questioned whether SDS would cause local intestinal toxicity and promote endotoxin invasion. To address this concern, we aim to study the importance of SDS and find out the optimized dosage for our bubble carrier system. Comparing to the effects of various SDS dose on bubble characteristics analysis, in vitro tests and in vivo tests, SDS is proved to improve loading efficiency, stabilize the bubble carrier, and enhance drug absorption as the increasing concentration. No obvious local irritation and endotoxin permeation enhanced is displayed in all SDS treated groups. But long-term toxicity should be concerned of taking highest dose of SDS daily. Therefore, moderate dose is chosen as the optimized one and carried out the following efficacy experiments. In the results of PK and PD studies, oral administration of this bubble carrier system can successfully deliver insulin into systemic circulation and exert hypoglycemic effects. In summary, the self-assembling bubble carrier with an optimal dose of SDS offering a promising and safety platform for oral protein drug delivery.
摘要 I
Abstract II
圖目錄 VI
表目錄 VII
第一章 緒論 1
1.1 糖尿病 (Diabetes Mellitus) 1
1.2 胰島素治療(Insulin-based Therapies) 2
1.2.1 胰島素投遞策略 3
1.3 生物製劑:蛋白質/胜肽藥物 5
1.3.1 開發蛋白質/胜肽藥物口服途徑的阻礙 6
1.3.2 口服藥物吸收途徑 8
1.4 自我組裝氣泡型奈米載體 (Self assembling nanobubble carriers) 9
1.4.1 Sodium dodecyl sulfate (SDS) 11
1.4.2 SDS 起泡性 (Foam property) 11
1.4.3 SDS於口服藥物的應用 12
1.4.4 SDS毒性探討 13
1.5 研究動機與目的 17
1.6 實驗設計流程圖 18
第二章 實驗材料與方法 19
2.1 實驗藥品 19
2.2 實驗儀器 19
2.3 氣泡特性探討 20
2.3.1 氣泡形態觀察 20
2.3.2 氣泡穩定度 20
2.3.3 氣泡載藥率測定 20
2.4 體外實驗 21
2.4.1 酵素降解試驗 21
2.4.2 Caco-2 permeability assay藥物穿透試驗 21
2.5 體內實驗 22
2.5.1 腸道形態及毒性傷害觀察 22
2.5.2 生物分佈觀測 23
2.5.3 藥物動力學和藥效學實驗 24
第三章 實驗結果與討論 25
3.1 氣泡特性探討 25
3.1.1 氣泡形態觀察 25
3.1.2 氣泡穩定度 26
3.1.3 氣泡載藥率測定 27
3.2 體外實驗 28
3.2.1 酵素降解試驗 28
3.2.2 Caco-2 permeability assay藥物穿透試驗 29
3.3 體內實驗 32
3.3.1 腸道形態及毒性傷害觀察 32
3.3.2 生物分佈觀測 34
3.3.3 物動力學和藥效學實驗 38
第四章 結論 40
第五章 參考資料 41

1. Aguiree, F., et al., IDF diabetes atlas. 2013.
2. Daneman, D., Type 1 diabetes. Lancet, 2006. 367(9513): p. 847-58.
3. Stumvoll, M., B.J. Goldstein, and T.W. van Haeften, Type 2 diabetes: principles of pathogenesis and therapy. Lancet, 2005. 365(9467): p. 1333-46.
4. Moller, D.E., New drug targets for type 2 diabetes and the metabolic syndrome. Nature, 2001. 414(6865): p. 821-7.
5. Olokoba, A.B., O.A. Obateru, and L.B. Olokoba, Type 2 diabetes mellitus: a review of current trends. Oman Med J, 2012. 27(4): p. 269-73.
6. Wilcox, G., Insulin and insulin resistance. Clin Biochem Rev, 2005. 26(2): p. 19-39.
7. Rosenfeld, L., Insulin: discovery and controversy. Clin Chem, 2002. 48(12): p. 2270-88.
8. Shahani, S. and L. Shahani, Use of insulin in diabetes: a century of treatment. Hong Kong Med J, 2015. 21(6): p. 553-9.
9. Woo, V.C., New Insulins and New Aspects in Insulin Delivery. Can J Diabetes, 2015. 39(4): p. 335-43.
10. Zaykov, A.N., J.P. Mayer, and R.D. DiMarchi, Pursuit of a perfect insulin. Nat Rev Drug Discov, 2016. 15(6): p. 425-39.
11. Shah, R.B., et al., Insulin delivery methods: Past, present and future. Int J Pharm Investig, 2016. 6(1): p. 1-9.
12. Soares, S., A. Costa, and B. Sarmento, Novel non-invasive methods of insulin delivery. Expert Opin Drug Deliv, 2012. 9(12): p. 1539-58.
13. Rader, R.A., (Re)defining biopharmaceutical. Nat Biotechnol, 2008. 26(7): p. 743-51.
14. Chhina, M.N., Overview of Biological Products. 2013: http://www.fda.gov/downloads/AboutFDA/Transparency/Basics/UCM356666.pdf.
15. Frokjaer, S. and D.E. Otzen, Protein drug stability: a formulation challenge. Nat Rev Drug Discov, 2005. 4(4): p. 298-306.
16. Park, K., I.C. Kwon, and K. Park, Oral protein delivery: current status and future prospect. Reactive and Functional Polymers, 2011. 71(3): p. 280-287.
17. Pavlou, A.K. and J.M. Reichert, Recombinant protein therapeutics--success rates, market trends and values to 2010. Nat Biotechnol, 2004. 22(12): p. 1513-9.
18. Levine, H.L. Biopharmaceutical Manufacturing: Meeting Tomorrow's Demands Today. 2014.
19. Mahato, R.I., et al., Emerging trends in oral delivery of peptide and protein drugs. Crit Rev Ther Drug Carrier Syst, 2003. 20(2-3): p. 153-214.
20. Morishita, M. and N.A. Peppas, Is the oral route possible for peptide and protein drug delivery? Drug discovery today, 2006. 11(19): p. 905-910.
21. Shaji, J. and V. Patole, Protein and Peptide drug delivery: oral approaches. Indian J Pharm Sci, 2008. 70(3): p. 269-77.
22. Van den Mooter, G. and R. Kinget, Oral colon-specific drug delivery: a review. Drug delivery, 1995. 2(2): p. 81-93.
23. Goldberg, M. and I. Gomez-Orellana, Challenges for the oral delivery of macromolecules. Nat Rev Drug Discov, 2003. 2(4): p. 289-95.
24. Salama, N.N., N.D. Eddington, and A. Fasano, Tight junction modulation and its relationship to drug delivery. Adv Drug Deliv Rev, 2006. 58(1): p. 15-28.
25. Rejman, J., et al., Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J, 2004. 377(Pt 1): p. 159-69.
26. Kou, L., et al., The endocytosis and intracellular fate of nanomedicines: implication for rational design. Asian Journal of Pharmaceutical Sciences, 2013. 8(1): p. 1-10.
27. Sadeghi, A.M., et al., Development of a Gas Empowered Drug Delivery system for peptide delivery in the small intestine. J Control Release, 2009. 134(1): p. 11-7.
28. Chuang, E.Y., et al., Self-assembling bubble carriers for oral protein delivery. Biomaterials, 2015. 64: p. 115-24.
29. Caligur, V., Detergents and Solubilization Reagents. 2008: http://wolfson.huji.ac.il/purification/PDF/detergents/SIGMA_DetergentsBiofiles.pdf.
30. Mukerjee, P. and K.J. Mysels, Critical micelle concentrations of aqueous surfactant systems. 1971, DTIC Document.
31. Amaral, M.H., et al., Foamability of detergent solutions prepared with different types of surfactants and waters. Journal of surfactants and detergents, 2008. 11(4): p. 275-278.
32. Oh, S.G. and D.O. Shah, Relationship between micellar lifetime and foamability of sodium dodecyl sulfate and sodium dodecyl sulfate/1-hexanol mixtures. Langmuir, 1991. 7(7): p. 1316-1318.
33. http://www.accessdata.fda.gov/scripts/cder/iig/index.cfm.
34. Trier, S., et al., Acylation of Glucagon-like peptide-2: interaction with lipid membranes and in vitro intestinal permeability. PLoS One, 2014. 9(10): p. e109939.
35. Ward, P.D., T.K. Tippin, and D.R. Thakker, Enhancing paracellular permeability by modulating epithelial tight junctions. Pharm Sci Technolo Today, 2000. 3(10): p. 346-358.
36. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm.
37. Background review for sodium laurilsulfate used as an excipient. 2015: http://www.ema.europa.eu/docs/en_GB/document_library/Report/2015/08/WC500191475.pdf.
38. SIAM 25. Alkyl Sulfates, Alkane Sulfonates and α-Olefin Sulfonates, in SIDS INITIAL ASSESSMENT PROFILE. 2007: http://webnet.oecd.org/Hpv/ui/handler.axd?id=dbf0a76c-236d-4fdc-b4d4-4f4634778dff.
39. Narkar, Y., et al., Evaluation of mucosal damage and recovery in the gastrointestinal tract of rats by a penetration enhancer. Pharm Res, 2008. 25(1): p. 25-38.
40. Sakai, M., et al., Cytotoxicity of absorption enhancers in Caco-2 cell monolayers. J Pharm Pharmacol, 1998. 50(10): p. 1101-8.
41. Boulenc, X., et al., Sodium lauryl sulphate increases tiludronate paracellular transport using human epithelial caco-2 monolayers. International journal of pharmaceutics, 1995. 123(1): p. 71-83.
42. Shao, Z., et al., Differential effects of anionic, cationic, nonionic, and physiologic surfactants on the dissociation, alpha-chymotryptic degradation, and enteral absorption of insulin hexamers. Pharm Res, 1993. 10(2): p. 243-51.
43. Swenson, E.S., W.B. Milisen, and W. Curatolo, Intestinal permeability enhancement: efficacy, acute local toxicity, and reversibility. Pharm Res, 1994. 11(8): p. 1132-42.
44. Nakanishi, K., M. Masada, and T. Nadai, Effect of pharmaceutical adjuvants on the rectal permeability of drugs. III. Effect of repeated administration and recovery of the permeability. Chem Pharm Bull (Tokyo), 1983. 31(11): p. 4161-6.
45. Sharma, P., et al., In situ and in vivo efficacy of peroral absorption enhancers in rats and correlation to in vitro mechanistic studies. Farmaco, 2005. 60(11-12): p. 874-83.
46. SIAM 5. Sodium dodecyl sulfate, in SIDS INITIAL ASSESSMENT PROFILE 2005. p. 18.
47. Anderberg, E.K. and P. Artursson, Epithelial transport of drugs in cell culture. VIII: Effects of sodium dodecyl sulfate on cell membrane and tight junction permeability in human intestinal epithelial (Caco-2) cells. J Pharm Sci, 1993. 82(4): p. 392-8.
48. Xu, Q., et al., Effects of surfactant and electrolyte concentrations on bubble formation and stabilization. J Colloid Interface Sci, 2009. 332(1): p. 208-14.
49. Lioumbas, J.S., et al., Foam free drainage and bubbles size for surfactant concentrations below the CMC. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015. 487: p. 92-103.
50. Diamant, H. and D. Andelman, Onset of self-assembly in polymer-surfactant systems. EPL (Europhysics Letters), 1999. 48(2): p. 170.
51. Yu, Y.Q., et al., Enzyme-friendly, mass spectrometry-compatible surfactant for in-solution enzymatic digestion of proteins. Anal Chem, 2003. 75(21): p. 6023-8.
52. Ghosh, S., Interaction of trypsin with sodium dodecyl sulfate in aqueous medium: a conformational view. Colloids Surf B Biointerfaces, 2008. 66(2): p. 178-86.
53. Hubatsch, I., E.G. Ragnarsson, and P. Artursson, Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc, 2007. 2(9): p. 2111-9.
54. Hollander, D., The intestinal permeability barrier. A hypothesis as to its regulation and involvement in Crohn's disease. Scand J Gastroenterol, 1992. 27(9): p. 721-6.
55. http://www.cryst.bbk.ac.uk/pps97/course/section11/insulin.html.
56. Komarova, Y. and A.B. Malik, Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol, 2010. 72: p. 463-93.
57. Sonaje, K., et al., Effects of chitosan-nanoparticle-mediated tight junction opening on the oral absorption of endotoxins. Biomaterials, 2011. 32(33): p. 8712-21.
58. McCartney, F., J.P. Gleeson, and D.J. Brayden, Safety concerns over the use of intestinal permeation enhancers: A mini-review. Tissue Barriers, 2016. 4(2): p. e1176822.
59. Guidance for Industry-Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers 2005, U.S. Department of Health and Human Services
Food and Drug Administration
Center for Drug Evaluation and Research (CDER) http://www.fda.gov/downloads/Drugs/.../Guidances/UCM078932.pdf.
60. Reagan-Shaw, S., M. Nihal, and N. Ahmad, Dose translation from animal to human studies revisited. FASEB J, 2008. 22(3): p. 659-61.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *