帳號:guest(3.16.203.103)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):易尚儀
作者(外文):Yi, Shang-Yi
論文名稱(中文):功能性奈米粒子陣列應用於醫材抗菌塗層與食安快篩試片之研究
論文名稱(外文):Substrate-Independent Immobilization of Monolayer Metal Nanoparticles Array via Self-Assembly for Efficient Antibiofilm Coatings and Food Safety Sensing Platforms
指導教授(中文):萬德輝
指導教授(外文):Wan, Dehui
口試委員(中文):張晃猷
鄭兆珉
口試委員(外文):Chang, Hwan-You
Cheng, Chao-Min
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物醫學工程研究所
學號:103038501
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:105
中文關鍵詞:金屬奈米粒子陣列抗生物膜生醫感測器
外文關鍵詞:metal nanoparticles arrayantibiofilmbiosensing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:49
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文為利用濕式化學法將金屬奈米粒子陣列自組裝於各式高分子與金屬基板上,將其應用於植入性醫材抗菌塗層與食品安全檢測中。在過往研究中,雖然有許多方法可將金屬奈米粒子製備於基板上,但是往往需要昂貴的設備、繁瑣的製程或是基板的選擇相對有限。因此,在論文的第一部分,我們開發一種濕式化學製程,成功將金屬奈米粒子均勻地自組裝於二維與三維基材上。接著,在論文的第二及第三部分,我們結合金屬奈米粒子獨特的化學及光學特性,進一步探討此製程技術之應用。在第二部分中,我們評估銀奈米粒子陣列之抗菌塗層於大腸桿菌、綠膿桿菌與金黃色葡萄球菌之抗生物膜(anti-biofilm)效果,透過生化分析及電顯觀察,我們發現銀奈米粒子陣列之抗菌塗層可顯著抑制生物膜生成,更重要的是,銀奈米粒子陣列之抗菌塗層對小鼠纖維母細胞幾乎不具毒性,初步顯示其具良好的生物相容性。在第三部份中,我們製備金屬奈米粒子陣列於聚對苯二甲酸乙二酯上,以檢測食物腐敗過程中產生的生物胺。藉由食物腐敗散發出之腐胺氣體分子附著於金屬奈米粒子上,造成奈米粒子之周圍環境折射率改變,進而改變金屬奈米粒子之侷域表面電漿共振之光學性質,以此奈米氣體感測平台兼具快速反應及高靈敏度—在反應15秒內即可以肉眼判斷試片表面之顏色變化,透過試片影像分析色彩變化量其最低偵測極限可至43 ppm,若以光譜儀觀察特徵峰之位移量其最低偵測極限可至3 ppm,因此我們開發的低成本、可拋棄式金屬奈米粒子陣列試片可做為即時檢測食物新鮮度之指標。
In this study, we demonstrate that polymers and metal substrates can be coated metal nanoparticles [i.e., gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), hollow gold nanoparticles (HGNs)] can be immobilized onto polymer and metal substrates via self-assembly.The substrates functionalized with metal nanoparticles can be applied to biomedical engineering and detection of food safety. In previous studies, some methods have been developed to immobilize metal nanoparticles onto substrates, which typically need expensive equipments, complicated procedures, and restricted types of material.In first part of my thesis, we demonstrate that monolayer metal nanoparticles array can be homogenously immobilized onto polymer and metal substrates via the wet-chemical method, and systematically discuss the mechanism of self-assembly. Next, we utilized the functionalized substrates to develop two applications using the chemical and optical properties of metal nanoparticles. In the second part, we immobilized Ag NPs onto implantable devices hasing a polymer or metal surface, and found the nanoparticles coating presented efficient anti-biofilm activity against E.coli, P.sudomonas, S.aureus. More importantly the nanoparticle-coated substrates show negligible cytotoxicity toward NIH-3T3 cell. In the third part, the amount of the biogenic amines has been proved to be associated with corruption of seafood. Therefore, we used a low-cost, dispsable, polyethylene terephthalate (PET) substrates to develop a colorimetric sensor for the detection of biogenic amines. The PET-based sensors display the optical changes upon increasing putrescine concentration, which was attributed to the red-shift of surface plasmon resonance (SPR) absorption peak of metal nanoparticles. In order to verify the concept, we spiked various concentrations of putrescine in fresh salmon samples purchased from the local market. Visible color change was observed in the silver nanoparticles (AgNPs) biosensor by the naked-eye within 15 seconds, with a limit of detection (LOD) of 43 ppm. The gold and hollow gold nanoparticles (AuHGN) biosensor showed obvious spectral peak shifts, with its LOD as low as 3 ppm. Both biosensors demonstrated LODs well below the European Commission’s recommended concentration of 300 ppm and provided a biosensing platform for the low-cost and simple detection of biogenic amines. Finally, we demonstrate that the food freshness could be in situ monitored by naked eyes by using our PET-based sensors.
誌謝 I
中文摘要 II
Abstract III
目錄 V
圖目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2論文架構 2
第二章 文獻回顧 3
2.1製備單層金屬奈米粒子陣列於基材上 3
2.1.1以物理性方法製備金屬奈米粒子陣列於基板上 3
2.1.2以化學性方法製備金屬奈米粒子陣列於基板上 5
2.1.3金屬奈米粒子陣列於基板上之應用 6
2.2植入性醫材之抗生物膜塗層 7
2.2.1生物膜生成機制 7
2.2.2臨床上對細菌感染之因應方法 8
2.2.3銀奈米粒子之抗菌機制 10
2.3檢測食物中腐敗產生之生物胺 15
2.3.1食物中之生物胺 15
2.3.2生物胺之含量標準 16
2.3.3檢測食物腐敗時生物胺生成之方法 17
2.3.4金屬奈米粒子光學性質與生醫工程上之應用 18
第三章 自組裝單層金屬奈米粒子陣列於基材上 23
3.1研究目的 23
3.2實驗材料與方法 24
3.3研究結果與討論 27
3.3.1製備烷基矽烷分子陣列於高分子與金屬基板 27
3.3.2製備金屬奈米粒子陣列自組裝於高分子與金屬基板 33
3.3.3形貌分析 35
3.4結論 42
第四章 銀奈米粒子陣列應用於生醫材料抗菌塗層 43
4.1研究目的 43
4.2研究方法 44
4.3研究結果與討論 49
4.3.1銀奈米粒子陣列應用於植入性醫材抗菌塗層 49
4.3.2評估抗生物膜生成之效果 50
4.3.3評估銀奈米粒子抗菌塗層於生理食鹽水中銀釋放量 59
4.3.4評估銀釋放後的抗菌塗層其抗生物膜生成之效果 60
4.3.5評估抗菌塗層於不同保存環境下之化學穩定性 62
4.3.6生物相容性試驗 65
4.3.7評估銀奈米粒子抗菌塗層於臨床上醫材之抗生物膜效果 68
第五章 功能性奈米粒子陣列應用於食安快篩試片之研究 71
5.1研究目的 71
5.2研究方法 72
5.3研究結果與討論 74
5.3.1金屬奈米粒子陣列應用於食品安全快篩之試片 74
5.3.2探討生物胺分子吸附於檢測試片之靈敏性測試 76
5.3.3不同生物胺溶液之選擇性 81
5.3.4氣體干擾物測試 82
5.3.5檢測試片吸附生物胺後置於不同環境之恢復程度 83
5.3.6檢測市售上實際肉品之新鮮度 85
5.4結論 93
第六章 總結 95
參考文獻 96

[1] Walters G, Parkin IP. The incorporation of noble metal nanoparticles into host matrix thin films: synthesis, characterisation and applications. J Mater Chem. 2009;19:574-90.
[2] Hong ZC, Perevedentseva E, Treschev S, Wang JB, Cheng CL. Surface enhanced Raman scattering of nano diamond using visible-light-activated TiO2 as a catalyst to photo-reduce nano-structured silver from AgNO3 as SERS-active substrate. J Raman Spectrosc. 2009;40:1016-22.
[3] Huang ZG, Song XM, Zhong SH, Xu HY, Luo WX, Zhu XD, et al. 20.0% Efficiency Si Nano/Microstructures Based Solar Cells with Excellent Broadband Spectral Response. Adv Funct Mater. 2016;26:1892-8.
[4] Pei P, Xiong HG, Cai J, Liu C, Zia-ud-Din, Yu Y. Enhanced the weatherability of bamboo fiber-based outdoor building decoration materials by rutile nano-TiO2. Constr Build Mater. 2016;114:307-16.
[5] Darvill D, Centeno A, Xie F. Plasmonic fluorescence enhancement by metal nanostructures: shaping the future of bionanotechnology. Phys Chem Chem Phys. 2013;15:15709-26.
[6] Li M, Zhang WJ, Chen HX, Wan T, Zheng QC. Biocompatibility and biodistribution of dual-ligand chitosan nanocarrier modified with glycyrrhetinic acid and galatose in vivo. Nanomed-Nanotechnol. 2016;12:485-.
[7] Dancila D, Moossavi R, Siden J, Zhang ZB, Rydberg A. Antennas on paper using ink-jet printing of nano-silver particles for wireless sensor networks in train environment. Microw Opt Techn Let. 2016;58:754-9.
[8] Hu YC, Gong X, Zhang JM, Chen FQ, Fu CM, Li P, et al. Activated Charge-Reversal Polymeric Nano-System: The Promising Strategy in Drug Delivery for Cancer Therapy. Polymers-Basel. 2016;8.
[9] Li Y, Yang J, Song J. Nano-energy system coupling model and failure characterization of lithium ion battery electrode in electric energy vehicles. Renew Sust Energ Rev. 2016;54:1250-61.
[10] Hoffmann PW, Stelzle M, Rabolt JF. Vapor phase self-assembly of fluorinated monolayers on silicon and germanium oxide. Langmuir. 1997;13:1877-80.
[11] Chen X, Knez M, Berger A, Nielsch K, Gosele U, Steinhart M. Formation of Titania/Silica hybrid nanowires containing linear mesocage Arrays by evaporation-induced block-copolymer self-assembly and atomic layer deposition. Angew Chem Int Edit. 2007;46:6829-32.
[12] Lai KF, Liu CC, Pitera J, Dechene DJ, Schepis A, Abdallah J, et al. Computational Aspects of Optical Lithography Extension by Directed Self-Assembly. Optical Microlithography Xxvi. 2013;8683.
[13] Yang XM, Xiao SG, Hu W, Hwu J, van de Veerdonk R, Wago K, et al. Integration of nanoimprint lithography with block copolymer directed self-assembly for fabrication of a sub-20 nm template for bit-patterned media. Nanotechnology. 2014;25.
[14] Sundar A, Hughes RA, Farzinpour P, Gilroy KD, Devenyi GA, Preston JS, et al. Manipulating the size distribution of supported gold nanostructures. Appl Phys Lett. 2012;100.
[15] Sivaraman SK, Santhanam V. Realization of thermally durable close-packed 2D gold nanoparticle arrays using self-assembly and plasma etching. Nanotechnology. 2012;23.
[16] Dawood MK, Tripathy S, Dolmanan SB, Ng TH, Tan H, Lam J. Influence of catalytic gold and silver metal nanoparticles on structural, optical, and vibrational properties of silicon nanowires synthesized by metal-assisted chemical etching. J Appl Phys. 2012;112.
[17] Grabar KC, Freeman RG, Hommer MB, Natan MJ. Preparation and Characterization of Au Colloid Monolayers. Anal Chem. 1995;67:735-43.
[18] Naik VV, Crobu M, Venkataraman NV, Spencer ND. Multiple Transmission-Reflection IR Spectroscopy Shows that Surface Hydroxyls Play Only a Minor Role in Alkylsilane Monolayer Formation on Silica. J Phys Chem Lett. 2013;4:2745-51.
[19] Sarkar A, Daniels-Race T. Electrophoretic Deposition of Carbon Nanotubes on 3-Amino-Propyl-Triethoxysilane (APTES) Surface Functionalized Silicon Substrates. Nanomaterials-Basel. 2013;3:272-88.
[20] Senadeera GKR, Kitamura T, Wada Y, Yanagida S. Deposition of polyaniline via molecular self-assembly on TiO2 and its uses as a sensitiser in solid-state solar cells. J Photoch Photobio A. 2004;164:61-6.
[21] Sun WW, Peng T, Liu YM, Yu WJ, Zhang K, Mehnane HF, et al. Layer-by-Layer Self-Assembly of TiO2 Hierarchical Nanosheets with Exposed {001} Facets As an Effective Bifunctional Layer for Dye-Sensitized Solar Cells. Acs Appl Mater Inter. 2014;6:9144-9.
[22] Feng XM, Ruan FX, Hong RJ, Ye JS, Hu JQ, Hu GQ, et al. Synthetically Directed Self-Assembly and Enhanced Surface-Enhanced Raman Scattering Property of Twinned Crystalline Ag/Ag Homojunction Nanoparticles. Langmuir. 2011;27:2204-10.
[23] Liu Q, Jiang L, Guo L. Precursor-Directed Self-Assembly of Porous ZnO Nanosheets as High-Performance Surface-Enhanced Raman Scattering Substrate. Small. 2014;10:48-51.
[24] Sun XY, Liu B, Li SC, Li F. Reusable fluorescent sensor for captopril based on energy transfer from photoluminescent graphene oxide self-assembly multilayers to silver nanoparticles. Spectrochim Acta A. 2016;161:33-8.
[25] Hu R, Long GD, Chen J, Yin YC, Liu YX, Zhu F, et al. Highly sensitive colorimetric sensor for the detection of H2PO4- based on self-assembly of p-sulfonatocalix[6]arene modified silver nanoparticles. Sensor Actuat B-Chem. 2015;218:191-5.
[26] Fang YC, Li XX, Blinn K, Mahmoud MA, Liu ML. Resonant surface enhancement of Raman scattering of Ag nanoparticles on silicon substrates fabricated by dc sputtering. J Vac Sci Technol A. 2012;30.
[27] Markowska K, Grudniak AM, Wolska KI. Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim Pol. 2013;60:523-30.
[28] Donlan RM. Preventing biofilms of clinically relevant organisms using bacteriophage. Trends Microbiol. 2009;17:66-72.
[29] Haussler S, Fuqua C. Biofilms 2012: New Discoveries and Significant Wrinkles in a Dynamic Field. J Bacteriol. 2013;195:2947-58.
[30] Kostakioti M, Hadjifrangiskou M, Hultgren SJ. Bacterial Biofilms: Development, Dispersal, and Therapeutic Strategies in the Dawn of the Postantibiotic Era. Csh Perspect Med. 2013;3.
[31] Abraham EP, Chain E. An enzyme from bacteria able to destroy penicillin. Nature. 1940;146:837-.
[32] Powers JH. Antimicrobial drug development - the past, the present, and the future. Clin Microbiol Infec. 2004;10:23-31.
[33] Rizzello L, Pompa PP. Nanosilver-based antibacterial drugs and devices: Mechanisms, methodological drawbacks, and guidelines. Chem Soc Rev. 2014;43:1501-18.
[34] Taubes G. The bacteria fight back. Science. 2008;321:356-61.
[35] Richards MJ, Edwards JR, Culver DH, Gaynes RP, System NNIS. Nosocomial infections in medical intensive care units in the United States. Crit Care Med. 1999;27:887-92.
[36] Nickel JC, Olson ME, Barabas A, Benediktsson H, Dasgupta MK, Costerton JW. Pathogenesis of Chronic Bacterial Prostatitis in an Animal-Model. Brit J Urol. 1990;66:47-54.
[37] Rosen DA, Hooton TM, Stamm WE, Humphrey PA, Hultgren SJ. Detection of intracellular bacterial communities in human urinary tract infection. Plos Med. 2007;4:1949-58.
[38] Nickel JC, Olson M, Mclean RJC, Grant SK, Costerton JW. An Ecological Study of Infected Urinary Stone Genesis in an Animal-Model. Brit J Urol. 1987;59:21-30.
[39] Sobel JD. Bacterial vaginosis. Annu Rev Med. 2000;51:349-56.
[40] Tenke P, Koves B, Nagy K, Hultgren SJ, Mendling W, Wullt B, et al. Update on biofilm infections in the urinary tract. World J Urol. 2012;30:51-7.
[41] De Ridder DJMK, Everaert K, Fernandez LG, Valero JVF, Duran AB, Abrisqueta MLJ, et al. Intermittent catheterisation with hydrophilic-coated catheters (SpeediCath) reduces the risk of clinical urinary tract infection in spinal cord injured patients: A prospective randomised parallel comparative trial. Eur Urol. 2005;48:991-5.
[42] Riedl CR, Witkowski M, Plas E, Pflueger H. Heparin coating reduces encrustation of ureteral stents: a preliminary report. Int J Antimicrob Ag. 2002;19:507-10.
[43] Cadieux PA, Chew BH, Knudsen BE, DeJong K, Rowe E, Reid G, et al. Triclosan loaded ureteral stents decrease proteus mirabilis 296 infection in a rabbit urinary tract infection model. J Urology. 2006;175:2331-5.
[44] Schumm K, Lam TBL. Types of Urethral Catheters for Management of Short-Term Voiding Problems in Hospitalized Adults: A Short Version Cochrane Review. Neurourol Urodynam. 2008;27:738-46.
[45] Seil JT, Webster TJ. Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomed. 2012;7:2767-81.
[46] Mohanty S, Mishra S, Jena P, Jacob B, Sarkar B, Sonawane A. An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomed-Nanotechnol. 2012;8:916-24.
[47] Chernousova S, Epple M. Silver as Antibacterial Agent: Ion, Nanoparticle, and Metal. Angew Chem Int Edit. 2013;52:1636-53.
[48] Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T, et al. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012;30:499-511.
[49] Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed-Nanotechnol. 2010;6:570-4.
[50] Mittelman AM, Lantagne DS, Rayner J, Pennell KD. Silver Dissolution and Release from Ceramic Water Filters. Environ Sci Technol. 2015;49:8515-22.
[51] Kumar A, Vemula PK, Ajayan PM, John G. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater. 2008;7:236-41.
[52] Munoz-Bonilla A, Fernandez-Garcia M. Polymeric materials with antimicrobial activity. Prog Polym Sci. 2012;37:281-339.
[53] Peng JJY, Botelho MG, Matinlinna JP. Silver compounds used in dentistry for caries management: A review. J Dent. 2012;40:531-41.
[54] Chen W, Liu Y, Courtney HS, Bettenga M, Agrawal CM, Bumgardner JD, et al. In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials. 2006;27:5512-7.
[55] Aliev G, Palacios HH, Shadlinski VB, Gokhman D, Gasiorowski K, Leszek J. Silver Nanoparticles as Alternate and Successful Strategies for Drug Delivery to Alzheimer Brain. Eur J Neurol. 2011;18:344-.
[56] Sivolella S, Stellini E, Brunello G, Gardin C, Ferroni L, Bressan E, et al. Silver Nanoparticles in Alveolar Bone Surgery Devices. J Nanomater. 2012.
[57] Choi O, Hu ZQ. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol. 2008;42:4583-8.
[58] Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346-53.
[59] Kim J, Lee J, Kwon S, Jeong S. Preparation of Biodegradable Polymer/Silver Nanoparticles Composite and Its Antibacterial Efficacy. J Nanosci Nanotechno. 2009;9:1098-102.
[60] Smetana AB, Klabunde KJ, Marchin GR, Sorensen CM. Biocidal activity of nanocrystalline silver powders and particles. Langmuir. 2008;24:7457-64.
[61] Agnihotri S, Mukherji S, Mukherji S. Immobilized silver nanoparticles enhance contact killing and show highest efficacy: elucidation of the mechanism of bactericidal action of silver. Nanoscale. 2013;5:7328-40.
[62] Cao HL, Liu XY, Meng FH, Chu PK. Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects. Biomaterials. 2011;32:693-705.
[63] Qin H, Cao HL, Zhao YC, Zhu C, Cheng T, Wang QJ, et al. In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium. Biomaterials. 2014;35:9114-25.
[64] Halasz A, Barath A, Simonsarkadi L, Holzapfel W. Biogenic-Amines and Their Production by Microorganisms in Food. Trends Food Sci Tech. 1994;5:42-9.
[65] Krizek M. The Determination of Biogenic-Amines in Silage. Arch Tierernahr. 1991;41:97-104.
[66] Tabor CW, Tabor H. 1,4-Diaminobutane (Putrescine), Spermidine, and Spermine. Annu Rev Biochem. 1976;45:285-306.
[67] Taylor WR. The Classification of Amino-Acid Conservation. J Theor Biol. 1986;119:205-&.
[68] Haard NF, Kariel N, Herzberg G, Feltham LAW, Winter K. Stabilization of Protein and Oil in Fish Silage for Use as a Ruminant Feed Supplement. J Sci Food Agr. 1985;36:229-41.
[69] Gouygou JP, Sinquin C, Durand P. High-Pressure Liquid-Chromatography Determination of Histamine in Fish. J Food Sci. 1987;52:925-7.
[70] Vinci G, Antonelli ML. Biogenic amines: quality index of freshness in red and white meat. Food Control. 2002;13:519-24.
[71] Bover-Cid S, Izquierdo-Pulido M, Vidal-Carou MC. Influence of hygienic quality of raw materials on biogenic amine production during ripening and storage of dry fermented sausages. J Food Protect. 2000;63:1544-50.
[72] Karovicova J, Kohajdova Z. Biogenic amines in food. Chem Pap. 2005;59:70-9.
[73] Hernandez-Borges J, D'Orazio G, Aturki Z, Fanali S. Nano-liquid chromatography analysis of dansylated biogenic amines in wines. J Chromatogr A. 2007;1147:192-9.
[74] Sumner SS, Speckhard MW, Somers EB, Taylor SL. Isolation of Histamine-Producing Lactobacillus-Buchneri from Swiss Cheese Implicated in a Food Poisoning Outbreak. Appl Environ Microb. 1985;50:1094-6.
[75] Mietz JL, Karmas E. Chemical Quality Index of Canned Tuna as Determined by High-Pressure Liquid-Chromatography. J Food Sci. 1977;42:155-8.
[76] Baixas-Nogueras S, Bover-Cid S, Veciana-Nogues MT, Marine-Font A, Vidal-Carou MC. Biogenic amine index for freshness evaluation in iced Mediterranean hake (Merluccius merluccius). J Food Protect. 2005;68:2433-8.
[77] Lehane L, Olley J. Histamine fish poisoning revisited. Int J Food Microbiol. 2000;58:1-37.
[78] Ozogul F, Gokbulut C, Ozogul Y, Ozyurt G. Biogenic amine production and nucleotide ratios in gutted wild sea bass (Dicentrarchus labrax) stored in ice, wrapped in aluminium foil and wrapped in cling film at 4 degrees C. Food Chem. 2006;98:76-84.
[79] Landete JM, Ferrer S, Pardo I. Improved enzymatic method for the rapid determination of histamine in wine. Food Addit Contam. 2004;21:1149-54.
[80] Landete JM, Ferrer S, Pardo I. Which lactic acid bacteria are responsible for histamine production in wine? J Appl Microbiol. 2005;99:580-6.
[81] Maijala RL. Formation of Histamine and Tyramine by Some Lactic-Acid Bacteria in Mrs-Broth and Modified Decarboxylation Agar. Lett Appl Microbiol. 1993;17:40-3.
[82] Straub BW, Kicherer M, Schilcher SM, Hammes WP. The Formation of Biogenic-Amines by Fermentation Organisms. Z Lebensm Unters For. 1995;201:79-82.
[83] Bover-Cid S, Holzapfel WH. Improved screening procedure for biogenic amine production by lactic acid bacteria. Int J Food Microbiol. 1999;53:33-41.
[84] Lazaro C, Conte CA, Cunha FL, Marsico ET, Mano SB, Franco RM. Validation of an HPLC Methodology for the Identification and Quantification of Biogenic Amines in Chicken Meat. Food Anal Method. 2013;6:1024-32.
[85] Luten JB, Bouquet W, Seuren LAJ, Burggraaf MM, Riekwelbooy G, Durand P, et al. Biogenic-Amines in Fishery Products - Standardization Methods within Ec. Dev Food Sci. 1992;30:427-39.
[86] Barancin CE, Smoot JC, Findlay RH, Actis LA. Plasmid-mediated histamine biosynthesis in the bacterial fish pathogen Vibrio anguillarum. Plasmid. 1998;39:235-44.
[87] Garcia-Moruno E, Carrascosa AV, Munoz R. A rapid and inexpensive method for the determination of biogenic amines from bacterial cultures by thin-layer chromatography. J Food Protect. 2005;68:625-9.
[88] Landete JM, de las Rivas B, Marcobal A, Munoz R. Molecular methods for the detection of biogenic amine-producing bacteria on foods. Int J Food Microbiol. 2007;117:258-69.
[89] Innocente N, Biasutti A, Padovese A, Moret S. Determination of biogenic amines in cheese using HPLC technique and direct derivatization of acid extract. Food Chem. 2007;101:1285-9.
[90] Tsai YH, Lin CY, Chien LT, Lee TM, Wei CI, Hwang DF. Histamine contents of fermented fish products in Taiwan and isolation of histamine-forming bacteria. Food Chem. 2006;98:64-70.
[91] Chow CF, Kong HK, Leung SW, Chiu BKW, Koo CK, Lei ENY, et al. Heterobimetallic Ru(II)-Eu(III) Complex as Chemodosimeter for Selective Biogenic Amine Odorants Detection in Fish Sample. Anal Chem. 2011;83:289-96.
[92] Pablos JL, Vallejos S, Munoz A, Rojo MJ, Serna F, Garcia FC, et al. Solid Polymer Substrates and Coated Fibers Containing 2,4,6-Trinitrobenzene Motifs as Smart Labels for the Visual Detection of Biogenic Amine Vapors. Chem-Eur J. 2015;21:8733-6.
[93] Howes PD, Chandrawati R, Stevens MM. Colloidal nanoparticles as advanced biological sensors. Science. 2014;346:53-+.
[94] Na J, Kim T, Choi JB, Yun JY, Shin YH, Kang SW. Real-Time Diagnosis of Nano-Sized Contaminant Particles Generated in TiN Metal Organic Chemical Vapor Deposition. Appl Phys Express. 2009;2.
[95] Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, et al. Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 2004;11:169-83.
[96] Rosler A, Vandermeulen GWM, Klok HA. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv Drug Deliver Rev. 2012;64:270-9.
[97] Ma ZZ, Yu HC, Wu ZY, Wu Y, Xiao FB. A Highly Sensitive Amperometric Glucose Biosensor Based on a Nano-cube Cu2O Modified Glassy Carbon Electrode. Chinese J Anal Chem. 2016;44:822-6.
[98] Wu YL, Li QW, Zhang XL, Chen X, Wang XM. Glucose biosensor based on new carbon nanotube-gold-titania nano-composites modified glassy carbon electrode. Chinese Chem Lett. 2013;24:1087-90.
[99] Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, et al. Nanostructured plasmonic sensors. Chem Rev. 2008;108:494-521.
[100] Rioux D, Meunier M. Seeded Growth Synthesis of Composition and Size-Controlled Gold-Silver Alloy Nanoparticles. J Phys Chem C. 2015;119:13160-8.
[101] Sun YG, Xia YN. Shape-controlled synthesis of gold and silver nanoparticles. Science. 2002;298:2176-9.
[102] Jain PK, Huang WY, El-Sayed MA. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation. Nano Lett. 2007;7:2080-8.
[103] Caruso RA, Antonietti M. Sol-gel nanocoating: An approach to the preparation of structured materials. Chem Mater. 2001;13:3272-82.
[104] Kubo S, Diaz A, Tang Y, Mayer TS, Khoo IC, Mallouk TE. Tunability of the refractive index of gold nanoparticle dispersions. Nano Lett. 2007;7:3418-23.
[105] Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, et al. Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging. Accounts Chem Res. 2008;41:1721-30.
[106] Mie G. Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions. Ann Phys-Berlin. 1908;25:377-445.
[107] Homola J, Yee SS, Gauglitz G. Surface plasmon resonance sensors: review. Sensor Actuat B-Chem. 1999;54:3-15.
[108] Jung CC, Saban SB, Yee SS, Darling RB. Chemical electrode surface plasmon resonance sensor. Sensor Actuat B-Chem. 1996;32:143-7.
[109] Chinowsky TM, Saban SB, Yee SS. Experimental data from a trace metal sensor combining surface plasmon resonance with anodic stripping voltammetry. Sensor Actuat B-Chem. 1996;35:37-43.
[110] Ashwell GJ, Roberts MPS. Highly selective surface plasmon resonance sensor for NO2. Electron Lett. 1996;32:2089-91.
[111] Miwa S, Arakawa T. Selective gas detection by means of surface plasmon resonance sensors. Thin Solid Films. 1996;281:466-8.
[112] Liedberg B, Nylander C, Lundstrom I. Surface-Plasmon Resonance for Gas-Detection and Biosensing. Sensor Actuator. 1983;4:299-304.
[113] Lee HJ, Nedelkov D, Corn RM. Surface plasmon resonance imaging measurements of antibody arrays for the multiplexed detection of low molecular weight protein biomarkers. Anal Chem. 2006;78:6504-10.
[114] Cheng CS, Chen YQ, Lu CJ. Organic vapour sensing using localized surface plasmon resonance spectrum of metallic nanoparticles self assemble monolayer. Talanta. 2007;73:358-65.
[115] Jia ZJ, Xiu P, Li M, Xu XC, Shi YY, Cheng Y, et al. Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: Trap-killing of bacteria, surface-regulated osteoblast functions and host responses. Biomaterials. 2016;75:203-22.
[116] Guo LY, Yuan WY, Lu ZS, Li CM. Polymer/nanosilver composite coatings for antibacterial applications. Colloid Surface A. 2013;439:69-83.
[117] Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007;18.
[118] Feng ZV, Gunsolus IL, Qiu TA, Hurley KR, Nyberg LH, Frew H, et al. Impacts of gold nanoparticle charge and ligand type on surface binding and toxicity to Gram-negative and Gram-positive bacteria. Chem Sci. 2015;6:5186-96.
[119] McShan D, Ray PC, Yu HT. Molecular toxicity mechanism of nanosilver. J Food Drug Anal. 2014;22:116-27.
[120] Taheri S, Cavallaro A, Christo SN, Smith LE, Majewski P, Barton M, et al. Substrate independent silver nanoparticle based antibacterial coatings. Biomaterials. 2014;35:4601-9.
[121] Satir P, Christensen ST. Structure and function of mammalian cilia. Histochem Cell Biol. 2008;129:687-93.
[122] Qin H, Cao HL, Zhao YC, Jin GD, Cheng MQ, Wang JX, et al. Antimicrobial and Osteogenic Properties of Silver-Ion-Implanted Stainless Steel. Acs Appl Mater Inter. 2015;7:10785-94.
[123] Ivanova AA, Surmenev RA, Surmeneva MA, Mukhametkaliyev T, Loza K, Prymak O, et al. Hybrid biocomposite with a tunable antibacterial activity and bioactivity based on RF magnetron sputter deposited coating and silver nanoparticles. Appl Surf Sci. 2015;329:212-8.
[124] Trujillo NA, Oldinski RA, Ma HY, Bryers JD, Williams JD, Popat KC. Antibacterial effects of silver-doped hydroxyapatite thin films sputter deposited on titanium. Mat Sci Eng C-Mater. 2012;32:2135-44.
[125] Muscarella M, Lo Magro S, Campaniello M, Armentano A, Stacchini P. Survey of histamine levels in fresh fish and fish products collected in Puglia (Italy) by ELISA and HPLC with fluorimetric detection. Food Control. 2013;31:211-7.
[126] Hungerford J, Wu WH. Comparison study of three rapid test kits for histamine in fish: BiooScientific MaxSignal enzymatic assay, Neogen Veratox ELISA, and the Neogen Reveal Histamine Screening test. Food Control. 2012;25:448-57.
[127] Zhu HP, Yang SS, Zhang Y, Fang GZ, Wang S. Simultaneous detection of fifteen biogenic amines in animal derived products by HPLC-FLD with solid-phase extraction after derivatization with dansyl chloride. Anal Methods-Uk. 2016;8:3747-55.
[128] Almeida C, Fernandes JO, Cunha SC. A novel dispersive liquid-liquid microextraction (DLLME) gas chromatography-mass spectrometry (GC-MS) method for the determination of eighteen biogenic amines in beer. Food Control. 2012;25:380-8.
[129] Tao ZH, Sato M, Han YL, Tan ZJ, Yamaguchi T, Nakano T. A simple and rapid method for histamine analysis in fish and fishery products by TLC determination. Food Control. 2011;22:1154-7.
[130] McKeating KS, Aube A, Masson JF. Biosensors and nanobiosensors for therapeutic drug and response monitoring. Analyst. 2016;141:429-49.
[131] Chen YQ, Lu CJ. Surface modification on silver nanoparticles for enhancing vapor selectivity of localized surface plasmon resonance sensors. Sensor Actuat B-Chem. 2009;135:492-8.
[132] Krizek M, Pavlicek T, Vacha F. Formation of selected biogenic amines in carp meat. J Sci Food Agr. 2002;82:1088-93.
[133] Romero R, Bagur MG, Gazquez D, Sanchez-Vinas M, Cuadros-Rodriguez L, Ortega M. Estimation of the main sources of uncertainty in chromatographic analysis: Determination of biogenic amines. Lc Gc N Am. 2004:95-103.


(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *