帳號:guest(3.133.148.162)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許育瑋
作者(外文):Hsu, Yu Wei
論文名稱(中文):六吋高強度屏蔽奈米化矽基板之GaN磊晶可行性驗證
論文名稱(外文):6-inch GaN Growth on Silicon Substrates Strengthened by Sealed Nanotextures
指導教授(中文):葉哲良
指導教授(外文):Yeh, Jer Liang
口試委員(中文):綦振瀛
侯帝光
林育芸
邱顯欽
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:103035519
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:94
中文關鍵詞:矽基氮化鎵奈米化強度提升磊晶電性
外文關鍵詞:GaN on Siliconnanotexturingstrength enhancementepitaxyelectrical property
相關次數:
  • 推薦推薦:0
  • 點閱點閱:57
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
氮化鎵(GaN)為目前非常熱門的半導體材料,目前大部分利用外延性磊晶生長(Epitaxy)製得,因此也讓磊晶用基板成為重要的研究對象,其中矽基板因技術成熟、取得容易且成本相對低廉而成為未來發展趨勢,因其具有可大尺寸成長(large-scale growth) 及大規模生產(mass production) 的優點,使矽基板於多種磊晶片的選項中更具競爭力。但矽基板和氮化鎵因材料特性的差異會衍生出許多問題,其中因材料熱不匹配所導致的晶片邊緣產生破裂(crack)尤其重要,其原因來自於基板無法承受磊晶過程中之應力所導致。嚴重者會造成磊晶片直接破裂損毀,輕微者也會導致較差的氮化鎵磊晶薄膜品質,使得後續製備電路之電性受影響。

本研究主要透過利用奈米結構分散應力的效果強化基板提高其可承受之磊晶應力,使目前業界常用於磊晶氮化鎵之6吋矽基板的厚度1000 μm減薄至一般積體電路製程所使用的標準片厚度675 μm,同時磊晶後之氮化鎵特性預期維持與1000 μm厚度基板相同,並於奈米結構上沉積二氧化矽及非晶矽保護層避免奈米結構於後續半導體製程中被破壞。本實驗之目標為研發高強度之矽基氮化鎵基板,基板製備完成後磊晶2.5 μm氮化鎵並於其上製作簡易電晶體,與未進行任何處理之675 μm及1000 μm氮化鎵磊晶片比較,對新型基板之強度提升效果及應用可行性做驗證。

由於奈米結構強化基板分散應力之效果的關鍵在於奈米結構之均勻性,故於本實驗中先對奈米結構均勻性之優化做討論。接著透過不同沉積製程成長保護層薄膜以達到保護奈米結構的效果,並追蹤每一步沉積製程後之翹曲變化以確保不影響到後續磊晶製程。本實驗製備出之新型基板可達到高於2倍之強度提升並且對於後續所磊晶之氮化鎵特性及電晶體電性並無顯著影響。
Gallium nitride (GaN) is a very popular semiconductor material in recent years, which mostly is grown by epitaxy in industry. It makes the substrates for epitaxy GaN become a big issue. Among different kinds of substrates, GaN-on-silicon (GaN-on-Si) is very competitive as a result of the mature fabrication technique, low cost and also because Si substrate processes the advantages of large-scale growth and mass production. But Si and GaN have quite different material properties, and it leads to several issues which will cause the low quality of GaN epitaxy and affect the electricity of circuit which is going to fabricate. The most important issue is the thermal mismatch, it will cause cracks in the edge of Si wafer as a result of substrate cannot sustain the stress and will break the wafer in serious condition.

This research is mainly focus on enhancing the strength of Si substrate by the stress distribution effect of nanostructure. We fabricate nanostructure on Si wafer to thinner the thickness of 6 inch Si wafer used for epitaxy GaN from 1000 μm to 675 μm, which is the compliant thickness industry using, and the GaN film properties on nanotextured substrate are expected to be the same with which on 1000 μm substrate. Then deposit the covering layer (silicon dioxide and amorphous-silicon) on nanostructure to protect nanostructure from destroyed by subsequent process and the particle pollution. The objective of this research is to create a high strength GaN-on-Si substrate, and verifies its feasibility by comparing the properties of GaN and transistor with normal 1000 μm and 675 μm substrates.

The critical point of stress distribution effect is the uniformity of nanostructure, so we firstly discuss the optimization of the experiment parameter and the different initial condition of silicon substrate. After that we deposit protection layer by different kinds of chemical vapor deposition (CVD) and trace the bowing in each step. In this research, we fabricate a new type silicon substrate which has 2 times strength compare to common substrate and no obvious influence for GaN properties and electrical property of transistor.
第一章 前言.....................................................1
1.1 研究背景........................................................1
1.2 矽基氮化鎵(GaN-on-silicon)之挑戰..................................4
1.3 文獻回顧.......................................................12
1.3.1 應力消彌技術(Stress engineering)................................12
1.3.2基板強度提升技術............................................17
1.4 研究動機與目標.................................................21
1.5 研究架構.......................................................22
第二章 原理及理論............................................22
2.1基礎理論........................................................23
2.1.1 奈米結構之應力分散效應......................................23
2.1.2 保護層與基板之應力分析......................................27
2.2 製程理論.......................................................30
2.2.1 金屬輔助化學蝕刻 (Metal-assisted chemical etching; MACE) ........ 30
2.2.2 化學氣相沉積 (Chemical vapor deposition; CVD) ..................34
第三章 實驗規劃...............................................37
3.1 實驗設計及流程.................................................37
3.2 矽(111)基板金屬輔助化學蝕刻製備奈米結構實驗.....................40
3.3 二氧化矽及非晶矽保護層沉積實驗.................................41
3.4 氮化鎵磊晶實驗................................................42
3.5 電晶體製備實驗.................................................44
第四章 實驗結果與討論.................................45
4.1 矽(111)基板金屬輔助化學蝕刻製備奈米結構實驗.....................45
4.1.1實驗參數分析—侵蝕面........................................45
4.1.2實驗參數分析—拋光面........................................50
4.2保護層薄膜沉積實驗..............................................51
4.2.1 沉積保護層於侵蝕面奈米結構..................................51
4.2.2 沉積保護層於拋光面奈米結構..................................53
4.3 基板翹曲量測...................................................57
4.4 氮化鎵磊晶實驗.................................................60
4.4.1 顯微鏡觀測..................................................62
4.4.2 氮化鎵薄膜特性量測..........................................66
4.4.3 磊晶前後基板翹曲量測........................................76
4.5 電晶體電性量測.................................................78
4.6 三點抗折試驗...................................................81
4.6.1 侵蝕面奈米結構..............................................81
4.6.2 拋光面奈米結構..............................................82
4.6.3 氮化鎵磊晶..................................................84
第五章 結論及未來工作.......................................87
參考文獻........................................................89
[1] Y. Development, "Power GaN Market 2014," June 2014.
[2] IHS, "GaN-on-Silicon LEDs Forecast to Increase Market Share to 40 Percent by 2020," in Newsroom, ed, 2013.
[3] A. Dadgar, S. Fritze, O. Schulz, J. Hennig, J. Blasing, H. Witte, et al., "Anisotropic bow and plastic deformation of GaN on silicon," Journal of Crystal Growth, vol. 370, pp. 278-281, May 1 2013.
[4] B. Gil, III-Nitride Semiconductors and their Modern Devices.
[5] S. Pal and C. Jacob, "Silicon - a new substrate for GaN growth," Bulletin of Materials Science, vol. 27, pp. 501-504, Dec 2004.
[6] T. Paskova, D. A. Hanser, and K. R. Evans, "GaN Substrates for III-Nitride Devices," Proceedings of the Ieee, vol. 98, pp. 1324-1338, Jul 2010.
[7] A. Krost and A. Dadgar, "GaN-based optoelectronics on silicon substrates," Materials Science and Engineering B-Solid State Materials for Advanced Technology, vol. 93, pp. 77-84, May 30 2002.
[8] M. Gonzalez, K. Cheng, P. Tseng, and G. Borghs, "GaN growth on patterned silicon substrates. A thermo mechanical study on wafer bow reduction," in Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 2012 13th International Conference on, 2012, pp. 1/6-6/6.
[9] 田春林, "光學薄膜應力與熱膨脹係數量測之研究," 博士, 2000.
[10] 黃文雄, "製程參數對薄膜應力影響之研究," 博士, 2001.
[11] J. M. Hodgkinson, Mechanical testing of advanced fibre composites: Elsevier, 2000.
[12] T. Takeuchi, H. Amano, K. Hiramatsu, N. Sawaki, and I. Akasaki, "Growth of Single Crystalline Gan Film on Si-Substrate Using 3c-Sic as an Intermediate Layer," Journal of Crystal Growth, vol. 115, pp. 634-638, Dec 1991.
[13] J. W. Yang, C. J. Sun, Q. Chen, M. Z. Anwar, M. A. Khan, S. A. Nikishin, et al., "High quality GaN-InGaN heterostructures grown on (111)silicon substrates," Applied Physics Letters, vol. 69, pp. 3566-3568, Dec 2 1996.
[14] C. S. Taiwan, "以大尺寸矽晶圓降低LED成本," 2013.
[15] N. Perkins, M. Horton, Z. Bandic, T. McGill, and T. Kuech, "Halide vapor phase epitaxy of gallium nitride films on sapphire and silicon substrates," in MRS Proceedings, 1995, p. 243.
[16] A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki, "The Growth of Single Crystalline Gan on a Si Substrate Using Aln as an Intermediate Layer," Journal of Crystal Growth, vol. 128, pp. 391-396, Mar 1993.
[17] P. Kung, A. Saxler, X. Zhang, D. Walker, T. C. Wang, I. Ferguson, et al., "High-Quality Aln and Gan Epilayers Grown on (00.1) Sapphire, (100), and (111) Silicon Substrates," Applied Physics Letters, vol. 66, pp. 2958-2960, May 29 1995.
[18] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, "Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer," Applied Physics Letters, vol. 48, pp. 353-355, 1986.
[19] S. A. Nikishin, N. N. Faleev, V. G. Antipov, S. Francoeur, L. Grave de Peralta, G. A. Seryogin, et al., "High quality GaN grown on Si(111) by gas source molecular beam epitaxy with ammonia," Applied Physics Letters, vol. 75, pp. 2073-2075, Oct 4 1999.
[20] Z. Keyan, W. Lianshan, C. S. Jin, and C. V. Thompson, "Evolution of AlN buffer layers on Silicon and the effect on the property of the expitaxial GaN film," in this proceedings, 1989.
[21] D. K. Kim, "Effect of AlN buffer thickness on stress relaxation in GaN layer on Si (111)," Solid-State Electronics, vol. 51, pp. 1005-1008, 2007.
[22] E. Feltin, B. Beaumont, M. Laugt, P. de Mierry, P. Vennegues, H. Lahreche, et al., "Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy," Applied Physics Letters, vol. 79, pp. 3230-3232, Nov 12 2001.
[23] T. Szymanski, M. Wosko, B. Paszkiewicz, R. Paszkiewicz, and M. Drzik, "Stress engineering in GaN structures grown on Si(111) substrates by SiN masking layer application," Journal of Vacuum Science & Technology A, vol. 33, Jul 2015.
[24] W. D. Callister and D. G. Rethwisch, Fundamentals of materials science and engineering: an integrated approach: John Wiley & Sons, 2012.
[25] F. Shimura, Semiconductor silicon crystal technology: Elsevier, 2012.
[26] L.-C. Zheng, "Mechanical & Transistor Properties of Flexible P-MOSFET Wafers Strengthened by Nanostructure on Backside," Master, 2014.
[27] J. F. Ziegler, Ion Implantation Science and Technology 2e: Elsevier, 2012.
[28] Y. J. A. K. K, "The Research of Nanowires on Silicon," 2014.
[29] K. Kashyap, A. Kumar, C. T. Huang, Y. Y. Lin, M. T. Hou, and J. A. Yeh, "Elimination of strength degrading effects caused by surface microdefect: A prevention achieved by silicon nanotexturing to avoid catastrophic brittle fracture," Scientific Reports, vol. 5, Jun 4 2015.
[30] W. R. Runyan and K. E. Bean, Semiconductor integrated circuit processing technology: Addison Wesley Publishing Company, 1990.
[31] A. Peng, "Covered Nanotexturing for High Strength Silicon Substrate Applied in IC Industry," Master, 2015.
[32] E. Donovan, F. Spaepen, D. Turnbull, J. Poate, and D. Jacobson, "Heat of crystallization and melting point of amorphous silicon," Applied Physics Letters, vol. 42, pp. 698-700, 1983.
[33] J. Hutchinson, "Singular behaviour at the end of a tensile crack in a hardening material," Journal of the Mechanics and Physics of Solids, vol. 16, pp. 13-31, 1968.
[34] H. Riedel and J. Rice, "Tensile cracks in creeping solids," in Fracture Mechanics, ed: ASTM International, 1980.
[35] M. Ohring, Materials science of thin films: Academic press, 2001.
[36] C.-N. Chen, C.-T. Huang, C.-L. Chao, M. T.-K. Hou, W.-C. Hsu, and J. A. Yeh, "Strengthening for sc-Si solar cells by surface modification with nanowires," Journal of Microelectromechanical Systems, vol. 20, pp. 549-551, 2011.
[37] K.-Q. Peng, Y.-J. Yan, S.-P. Gao, and J. Zhu, "Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry," Advanced Materials, vol. 14, p. 1164, 2002.
[38] G. Wu, "Silicon Substrate for GaN Epi-Growth by Stress Compensation Layer and Nanostructure Technique," Master, 2015.
[39] S. Schoenfelder, M. Ebert, C. Landesberger, K. Bock, and J. Bagdahn, "Investigations of the influence of dicing techniques on the strength properties of thin silicon," Microelectronics Reliability, vol. 47, pp. 168-178, 2007.
[40] R. von Mises, "Mechanics of the ductile form changes of crystals," Zeitschrift Fur Angewandte Mathematik Und Mechanik, vol. 8, pp. 161-185, 1928.
[41] S. Nishino, J. A. Powell, and H. A. Will, "Production of Large-Area Single-Crystal Wafers of Cubic Sic for Semiconductor-Devices," Applied Physics Letters, vol. 42, pp. 460-462, 1983.
[42] K.-H. Shen, "The study of microstructures and electrical properties of the interface of AlN/GaN," 2001.
[43] T. Technology. FLX 2320-S.
[44] M. T. Kim, "Influence of substrates on the elastic reaction of films for the microindentation tests," Thin Solid Films, vol. 283, pp. 12-16, Sep 1 1996.
[45] P. Hess, "Laser diagnostics of mechanical and elastic properties of silicon and carbon films," Applied Surface Science, vol. 106, pp. 429-437, Oct 1996.
[46] E. A. Group. XRD(X-射線繞射分析).
[47] 國立臺灣大學化學系學士生張育唐/國立臺灣大學化學系陳藹然博士. (2011). X-光繞射與布拉格定律.
[48] 陳宗廷, "在GaN-template上以電漿輔助分子束磊晶成長之高銦組成氮化銦鎵/氮化鎵量子井特性研究," 碩士, 2013.
[49] N. A. Geisse, "AFM and combined optical techniques," Materials Today, vol. 12, pp. 40-45, Jul-Aug 2009.
[50] AZoM. (2001, Dec 13). Silica - Silicon Dioxide (SiO2).
[51] M. Ohring, "The materials science of thin films, 1992," ed: Academic Press, London.
[52] 莊耿林, "以霍爾效應量測法對氮化鎵半導體作電性分析," 碩士, 2003.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *