|
[1] T. S. J. Lammerink, M. Elwenspoek, and J. H. J. Fluitman, “Optical excitation of micro-mechanical resonators,” in IEEE Micro Electro Mechanical Systems (MEMS), pp. 160-165, 1991. [2] S. J. Hyeong, and O. Brand, “High-Q-factor in-plane-mode resonant microsensor platform for gaseous/liquid environment,” in IEEE Journal of Microelectromechanical Systems, vol. 17, iss. 2, pp. 483-493, 2008. [3] A. Rahafrooz, A. Hajjam, and S. Pourkamali, “Thermal actuation of high frequency micromechanical resonators,” in IEEE SOI conference, pp. 1-2, 2009. [4] A. Rahafrooz, A. Hajjam, B. Tousifar, and S. Pourkamali, “Thermal actuation, a suitable mechanism for high frequency electromechanical resonators,” in IEEE Micro Electro Mechanical Systems (MEMS), pp. 200-203, 2010. [5] A. Rahafrooz, and S. Pourkamali, “High-frequency thermally actuated electromechanical resonators with piezoresistive readout,” in IEEE Transactions on Electron Devices, pp. 1205-1214, 2011. [6] H. J. Hall, A. Rahafrooz, J. J. Brownand, V. M. Brigh, and S. Pourkamali, “Thermally actuated I-shaped electromechanical VHF resonators,” in IEEE Micro Electro Mechanical Systems (MEMS), pp. 737-740, 2012. [7] A. Hajjam, A. Rahafrooz, and S. Pourkamali, “Sub-100ppb/℃ temperature stability in thermally actuated high frequency silicon resonators via degenerate phosphorous doping and bias current optimization,” in IEEE International Electron Devices Meeting (IEDM), pp. 7.5.1-7.5.4, 2010. [8] A. Hajjam, A. Rahafrooz, and S. Pourkamali, “Temperature compensated single-device electromechanical oscillators,” in IEEE Micro Electro Mechanical Systems (MEMS), pp. 801-804, 2011. [9] A. Rahafrooz, and S. Pourkamali, “Active self-Q-enhancement in high frequency thermally actuated M/NEMS resonators,” in IEEE Micro Electro Mechanical Systems (MEMS), pp. 760-763, 2011. [10] K. Udeshi, and Y.B. Gianchandani, “A DC-powered, tunable, fully mechanical oscillator using in-plane electrothermal actuation,” in IEEE Micro Electro Mechanical Systems (MEMS), pp. 502-505, 2004. [11] P. G. Steeneken, K. Le Phan, M. J. Goossens, G. E. J. Koops, G. J. A. M. Brom, C. van der Avoort , and J. T. M. van Beek,“Piezoresistive heat engine and refrigerator,” in Nature Physic, vol. 7, iss. 4, pp. 354-359, 2011. [12] A. Rahafrooz, and S. Pourkamali, “Fully micromechanical piezo-thermal oscillators,” in IEEE International Electron Devices Meeting (IEDM), pp. 7.2.1-7.2.4, 2010. [13] K.-H. Li, C.-C. Chen, M.-H. Li, and S.-S. Li, “A self-sustained nanomechanical thermal-piezoresistive oscillator with ultra-low power consumption,” in IEEE International Electron Devices Meeting (IEDM), pp. 22.2.1-22.2.4, 2014. [14] C.-C. Chen, H.-T. Yu, and S.-S. Li, “A balanced measurement and characterization technique for thermal-piezoresistive micromechanical resonators,” in IEEE Micro Electro Mechanical Systems (MEMS), pp. 377-380, 2012. [15] C.-C. Chen, M.-H. Li, W.-C. Chen, H.-T. Yu, and S.-S. Li, “Thermally-actuated and piezoresistively-sensed CMOS-MEMS resonator array using differential-mode operation,” in IEEE International Frequency Control Symposium (IFCS), pp. 1-4, 2012. [16] J.-H. Chang, C.-S. Li, C.-C. Chen, and S.-S. Li, “Performance evaluation of CMOS-MEMS thermal-piezoresistive resonators in ambient pressure for sensor applications,” in IEEE International Frequency Control Symposium (IFCS), pp. 1-3, 2015. [17] B. Tousifar, A. Rahafrooz, and S. Pourkamali, “Hydrogen detection using thermally actuated MEMS resonators,” in IEEE Sensors, pp. 1-4, 2011. [18] A. Hajjam, and S. Pourkamali, “Fabrication and characterization of MEMS-based resonant organic gas sensors,” in IEEE Sensors Journal, vol. 12, iss. 6, pp. 1958 -1964, 2012. [19] E. Mehdizadeh, J. C. Wilson, A. Hajjam, A. Rahafrooz, and S. Pourkamali, “Aerosol impactor with embedded MEMS resonant mass balance for real-time particulate mass concentration monitoring,” in IEEE Transducers, pp. 661-664, 2013. [20] E. Mehdizadeh, V. Kumar, S. Pourkamali, J. Gonzales, and R. Abdolvand, “A two-stage aerosol impactor with embedded MEMS resonant mass balances for particulate size segregation and mass concentration monitoring, ” in IEEE Sensors, pp1-4, 2013. [21] M. Maldonado-Garcia, V. Kumar, S. Pourkamali, and J. C. Wilson, “Miniaturized two stage aerosol impactor with chip-scale stages for airborne particulate size separation, ” in IEEE Sensors, pp1-4, 2015. [22] E.-C. Chang, C.-C. Chen, and S.-S. Li, “Real-time mass sensing and dynamic impact monitoring of printed pico-liter droplets realized by a thermal-piezoresistive self-sustained oscillator,” in IEEE Micro Electro Mechanical Systems (MEMS), pp1078-1081, 2016 [23] R. B. Reichenbach, M. K. Zalalutdinov, K. L. Aubin, D. A. Zaplewski, B. Ilic, B. H. Houston, H. G. Craighead, and J. M. Parpia, “Resistively actuated micromechanical dome resonators,” in SPIE, pp. 681-687, 2004. [24] A. Rahafrooz, A. Hajjam, and S. Pourkamali, “Rotational mode disk resonators for high-Q operation in liquid,” in IEEE Sensors, pp. 1071-1074, 2010. [25] Z. Xiong, E. Mairiaux, B. Walter, M. Faucher, L. Buchaillot, and B. Legrand, “5.4 MHz dog-bone oscillating AFM probe with thermal actuation and piezoresistive detection,” in IEEE Micro Electro Mechanical Systems (MEMS), pp. 592 -595, 2013. [26] K. Nakamura, Y. Isono, T. Toriyama, and S. Sugiyama, “Simulation of piezoresistivity in n-type single-crystal silicon on the basis of the first-principles band structure,” APS, Phys. Rev. B, vol 80, iss. 4, pp. 1-11, 2009. [27] M.-H. Li, C.-Y. Chen, C.-S. Li, C.-H. Chin, C.-C. Chen, and S.-S. Li, “Foundry-CMOS integrated oscillator circuits based on ultra-low power ovenized CMOS-MEMS resonators” in IEEE International Electron Devices Meeting (IEDM), pp. 18.4.1-18.4.4, 2013. [28] X. Xia, P. Zhou, and X. Li, “Effect of resonance-mode order on mass-sensing resolution of microcantilever sensors” in IEEE Sensors, pp. 577-580, 2008. |