帳號:guest(18.188.146.12)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):廖偉倩
作者(外文):Liao, Wei Chien
論文名稱(中文):奈米3D微影技術應用於錐狀微結構之製作
論文名稱(外文):Micro-cone Structure Fabrication by Nano 3D Lithography
指導教授(中文):傅建中
指導教授(外文):Fu, Chien Chung
口試委員(中文):劉席瑋
潘瑞文
曾繁根
宋震國
口試委員(外文):Liu, Hsia Wei
Pan, Jui Wen
Tseng, Fan Gang
Sung, Cheng Kuo
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:103035513
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:64
中文關鍵詞:錐狀微結構奈米3D微影技術微針陣列SU8AFM探針
外文關鍵詞:Micro-cone structureNano 3D lithographyMicroneedle arraySU8AFM tip
相關次數:
  • 推薦推薦:0
  • 點閱點閱:388
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
奈米3D微影技術 (Nano 3D Lithography) 整合雙光子聚合技術以及劑量累積效應,其加工精度可至微奈米尺度,此技術具有製作任意形狀結構的優勢,亦可彈性選擇光源波段掌握製程時間,本研究將以此為核心技術,製作各式錐狀微結構。
錐狀微結構的應用廣泛,諸如微針陣列可進行藥物的傳遞、作為AFM的探針、製作錐狀光纖於近場顯微術之發展、在電生理領域研究所使用到的微電極以及提高LCD導光板之輝度等;一般常見的製作方式採用蝕刻方式及傳統微影製程技術,在製程上具有極高的穩定性,但結構的角度受限且製作過程需輔以光罩定義圖形,而在錐狀微結構尖端精度的部分亦為各方所關注的課題;相較之下,採用奈米3D微影技術能夠克服製作角度的限制、省去額外的製程,也能有效降低成本與提升製作效率。
本研究採用波長為532nm的DPSS雷射以及780nm的Fiber雷射,搭配對應的精密光學元件調整光路,以三軸壓電平台控制移動方向,在光敏感材料SU8上進行實驗。透過線結構解析度的測試,得知不同功率與加工速度下的線寬大小與間距後,可進行基本錐狀微結構的參數測試。最後,藉由曝光劑量的控制與切層軟體規劃出最佳路徑,即可製作出高品質且多變化性的錐狀微結構。
Micro-cone structures have been widely utilized in different area, for example, microneedle for drug delivering, tip of atomic force microscopy (AFM), microelectrode for academic research, light guide plate of display, etc.
These structures are manufactured by common microfabrication technologies usually with complex processes and have some instruct limits in fabricating various shapes and achieving high quality tips such as etching, standard photo lithography process, LIGA process etc.
In contrast, a promising method called Nano 3D lithography (N3L) integrated with TPP and dosage accumulation is versatile and feasible to implement arbitrary structures. This thesis proposes to fabricate widely-used micro-cone structures through N3L system with 780nm, 532nm laser and precise optical elements.
In the fabrication system, structure was formed by a focused laser with three-axis stage movement, and the voxel size can be adjusted by laser power and the magnification of objective.
致謝 II
中文摘要 III
ABSTRACT IV
目錄 V
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究動機 7
1.4 論文架構 8
第二章 研究方法及原理 9
2.1 奈米3D微影技術 9
2.2 數值孔徑與雷射聚焦光點大小 10
2.3 軟體與使用者介面 13
2.3.1 切層軟體 13
2.3.2 點路徑規劃軟體 15
2.3.3 平台操作控制軟體 19
2.4 實驗材料與設備 21
2.4.1 光阻SU8-2100 21
2.4.2 實驗儀器 23
2.5 系統架構與配置 25
2.5.1 532奈米3D微影系統 25
2.5.2 780奈米3D微影系統 28
第三章 實驗規劃 32
3.1 SU-8製程步驟 32
3.2 基本曝光實驗 35
3.2.1 線結構測試 35
3.2.2 錐狀結構測試 37
3.3 微結構製作實驗 38
3.3.1 AFM探針 38
3.3.2 大面積微針陣列 40
第四章 實驗結果 43
4.1 線結構測試 43
4.2 錐狀結構測試 45
4.3 微結構製作實驗 47
4.3.1 AFM探針 47
4.3.2 大面積微針陣列 50
4.3.3 其他特殊微錐結構 53
第五章 問題討論 55
第六章 結論與未來展望 59
6.1 結論 59
6.2 未來展望 60
參考文獻 62
[1] Shin, Y.-M., et al., Superhydrophobic properties of a hierarchical structure using a silicon micro-tip array decorated with ZnO nanowires. Current Applied Physics, 2014. 14(5): p. 665-671.
[2] Martin, C.J., et al., Low temperature fabrication of biodegradable sugar glass microneedles for transdermal drug delivery applications. J Control Release, 2012. 158(1): p. 93-101.
[3] Wilke, N. and A. Morrissey, Silicon microneedle formation using modified mask designs based on convex corner undercut. Journal of Micromechanics and Microengineering, 2007. 17(2): p. 238-244.
[4] Luangveera, W., et al., Fabrication and characterization of novel microneedles made of a polystyrene solution. J Mech Behav Biomed Mater, 2015. 50: p. 77-81.
[5] Kim, K., et al., A tapered hollow metallic microneedle array using backside exposure of SU-8. Journal of Micromechanics and Microengineering, 2004. 14(4): p. 597-603.
[6] Prausnitz, P.M.R. Laboratory for Drug Delivery. Available from: http://drugdelivery.chbe.gatech.edu/gallery_microneedles.html.
[7] Bragheri, F., et al., Perfluoropolyether-Based Hydrophobic AFM Tips Fabricated by Two-Photon Polymerization, in Optical Society of America. 2014. p. FW4A.7.
[8] Okada, T., et al., Fabrication of various tip-size AFM probes for evaluating single-molecular retraction force between actin and anti-actin. Ultramicroscopy, 2009. 109(10): p. 1299-303.
[9] Park, J.W., et al., Characteristics of mask layer on (100) silicon induced by tribo-nanolithography with diamond tip cantilevers based on AFM. Journal of Materials Processing Technology, 2007. 187-188: p. 321-325.
[10] Kim, J.M. and H. Muramatsu, Two-Photon Photopolymerized Tips for Adhesion-Free Scanning-Probe Microscopy. NanoLett., 2005. 5(2): p. 309-314.
[11] PLUNIEN, G., B. MULLER, and W. GREINER, The Casimir effect. Physics Reports, 1986. 134: p. 87-193.
[12] Zhang, Z., et al., Quantitative imaging of rapidly decaying evanescent fields using plasmonic near-field scanning optical microscopy. Sci Rep, 2013. 3: p. 2803.
[13] Jung, B.J., et al., Fabrication of 15 nm curvature radius polymer tip probe on an optical fiber via two-photon polymerization and O2-plasma ashing. Current Applied Physics, 2013. 13(9): p. 2064-2069.
[14] 高宗聖 and 蔡定平, 近場光學新世界. 科學發展, 2005: p. 22-27.
[15] Fofonoff, T.A., et al., Microelectrode Array Fabrication by Electrical Discharge Machining and Chemical Etching. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004. 51(6): p. 890-895.
[16] Rousche, P.J. and R.A. Normann, Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex. Journal of Neuroscience Methods, 1998. 82: p. 1-15.
[17] Minamitani, M., Y. Utsumi, and T. Hattori, 3D microstructure fabrication for a high luminosity lighting-panel for LCD using synchrotron radiation. Microsystem Technologies, 2005. 11(4-5): p. 230-234.
[18] Maher, M.-A., et al., Fabrication of integrated light guiding plate for backlight system, in SPIE. 2006. p. 1-8.
[19] Tanaka, T., et al., Fabrication of a Tapered Structure by Means of Exposure to Diffracted UV Light, in Micro-NanoMechatronics and Human Science. 2006: Nagoya. p. 1-6.
[20] Liu, S., et al., The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin. Journal of Control Release, 2012. 161(3): p. 933-41.
[21] Sugiyama, S., S. Khumpuang, and G. Kawaguchi, Plain-pattern to cross-section transfer (PCT) technique for deep x-ray lithography and applications. Journal of Micromechanics and Microengineering, 2004. 14(10): p. 1399-1404.
[22] Turner, R., et al., Tapered LIGA HARMs. J. Micromech.Microeng, 2003. 13: p. 367-372.
[23] Liao, C.-Y., et al., Two-dimensional slicing method to speed up the fabrication of micro-objects based on two-photon polymerization. Applied Physics Letters, 2007. 91(3): p. 033108.
[24] Park, S.H., et al., Subregional slicing method to increase three-dimensional nanofabrication efficiency in two-photon polymerization. Applied Physics Letters, 2005. 87(15): p. 154108.
[25] Kim, R.H. and K.-S. Lee, 3D Stereolithography by Using Two-Photon Photopolymerization. Macromolecular Symposia, 2010. 298(1): p. 25-33.
[26] Kumar, S. and J.P. Kruth, Composites by rapid prototyping technology. Materials & Design, 2010. 31(2): p. 850-856.
[27] Tseng, C.-L., Design and Fabrication of Micro Devices by Two-Photon Polymerization Technology, in Department of Mechanical Engineering College of Engineering. 2011, National Taiwan University. p. 117.
[28] Parida, O.P. and N. Bhat, Characterization of optical properties of SU-8 and fabrication of optical componenets, in ICOP. 2009: India.
[29] OLYMPUS. Available from: http://www.olympus-global.com/en/news/2004a/nr040326ols3e.jsp.
[30] National Geoscience Database of IRAN. Available from: http://www.ngdir.ir/geolab/GeoLabExp.asp?PID=2598.
[31] PI – Piezo Technology and Piezo Systems for Nanopositioning. Available from: http://www.physikinstrumente.com/.
[32] Sexy Skin-Diagram of the skin. Available from: https://sexyskin.wikispaces.com/Diagram+of+the+skin.
[33] Bernstein, M., SOP_Omnicoat. 2011. p. 4.
[34] 3D printing on the micrometer scale - Nanoscribe GmbH. Available from: http://www.nanoscribe.de/en/.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *