帳號:guest(3.149.24.9)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭開太
作者(外文):Cheng, Kai Tai
論文名稱(中文):不同高分子表面聲波陣列感測器用於低濃度混合氣體偵測
論文名稱(外文):Surface Acoustic Wave Array Coated by Various Polymers for Detecting Low Concentration Gas Mixture
指導教授(中文):饒達仁
指導教授(外文):Yao, Da Jeng
口試委員(中文):鄭桂忠
林致廷
口試委員(外文):Tang, Kea Tiong
Lin, Chih-Ting
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:103035510
出版年(民國):105
畢業學年度:105
語文別:中文
論文頁數:110
中文關鍵詞:表面聲波感測器混合式氣體高分子薄膜
外文關鍵詞:Surface acoustic wave sensorsGas mixturePolymer film
相關次數:
  • 推薦推薦:0
  • 點閱點閱:505
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究利用表面聲波( Surface Acoustic Wave,SAW )原理發展出高靈敏度的電子鼻感測系統,利用128°YX-LiNbO3壓電材料與微機電之黃光微影製程完成感測晶片,搭配共振電路即可成功激發出中心頻率114 MHz表面聲波,以旋塗方式將高分子塗佈於延遲區上,以物理性吸附方式吸附待測氣體,當質量改變時會導致表面聲波波速改變,由此觀察頻率飄移下降量與氣體種類與濃度;本研究先以不同高分子對於單一氣體量測資料庫建立,最終以陣列化表面聲波系統量測未知濃度混合性氣體。
本研究原先利用二個感測器進行量測,提升至四個感測器進行量測,為了量測低濃度並個別對此二系統進行靈敏度、穩定度等進行探討與改進。就穩定度而言,其雜訊約為±10Hz;靈敏度方面,量測八種不同高分子(PNVP、P4VPy、P4VP、PMMA、PCL、PVB、PDMS及PS)對於氨氣及甲烷之靈敏度,而 PNVP對於氨氣靈敏度較高,其偵測極限為5 ppm,PMMA對於甲烷靈敏度較高,偵測極限為5 ppm;為了解決氣體管路多及濃度均一方面問題,本研究以原先體積800μL延伸成四個連結式微腔體,以提升感測時之效率;在氣體感測方面,成功以矩陣方式推算出混合氣體未知濃度(如120 ppm NH3+40 ppm CH4);除此之外,本實驗元件對於溫度(8507Hz/ oC)之偵測,並可以提供氣體校正。
未來希望可資料庫內氣體之完整性,並提升表面聲波陣列數量,以提高感測時氣體正確之濃度,並預期搭配上無線模組,使此混合氣體感測器可以更廣泛地被大眾應用於日常生活中。
 In this research, surface acoustic wave (SAW) is developed a highly sensitive electronic nose sensing system. 114 MHz SAW chips are fabricated by MEMS techniques in well design and processes; gold interdigital transducers are deposited on the 128° YX- LiNbO3. The physical adsorption of gas by sensitive coating material on delay lines and modulates the phase velocity of acoustic wave because mass loading effect .Using different frequency shift to identify the type and concentration of sample. Frist, the research detect single gas to construct database by different polymer. Eventually the goal of research use SAW array system measured unknown concentration of gas mixture.
In this research, the system used 2-ports sensors to detect gas mixture that increase to 4-ports sensors to detect it at same time. In order to detect low concentration of gas on two systems, sensitivity and stability are two important issues. The SAW sensor is coated with eight polymer (PNVP、P4VPy、P4VP、PMMA、PCL、PVB、PDMS and PS) to detect chemical compounds such as ammonia, methane and ammonia/methane mixture gases and find sensitivity and normalized. In ammonia, we found PNVP is higher than others. In methane, we found PMMA is higher than others. A 4-ports connecting micro-chamber is designed has replaced 800μL fluidic-chamber. An 4-ports connecting micro-chamber is designed for enhancing stability by blocking environmental interferences and uniformity of gas concentration and decrease gas line to increase detection efficiency. In addition, we test thermal stability and humidity on our sensors. It found that fixed temperature can improve stability and calibration.
For the future work, we hope increase database of single gas and increase quantity of sensor array is the most important target. And this SAW gas sensors has great potential in actual environment with wireless module and hope it’s can be widely used in daily life.
1. 緒論 1
1.1研究動機 1
1.2表面聲波簡介 1
1.3研究目標 3
2. 文獻回顧 4
2.1人類嗅覺簡介 4
2.2人工嗅覺電子鼻系統 6
2.3感測器定義 7
2.3.1感測器種類介紹 8
2.3.2感測器應用介紹 9
2.4氣體感測器種類 12
2.4.1半導體氣體感測器(Metal oxide semiconductor gas sensor) 12
2.4.2電化學氣體感測器(electrochemical gas sensor) 13
2.4.3 固態電解質氣體感測器(Solid state electrolyte gas sensor) 14
2.4.4 觸媒燃燒式氣體感測器(Catalytic combustion gas sensor) 15
2.4.5 紅外線氣體感測器(Infrared gas sensor) 15
2.4.6光離子化偵測器 16
2.4.7石英晶體微量天平 17
2.4.8懸臂樑氣體感測器(Cantilever beam gas sensor) 17
2.4.9表面聲波氣體感測器 18
2.4.10其他氣體感測器 18
2.4.11各種電子鼻之比較 18
2.5單一氣體與混和性氣體偵測之相關文獻 20
3. 表面聲波感測器原理 24
3.1壓電效應 24
3.2壓電材料種類及材料參數 27
3.2.1尤拉角( Euler-angle )及切面 29
3.2.2機電耦合係數( electromechanical coupling coefficient, K2 ) 30
3.2.3溫度延遲係數( temperature coefficient of delay,TCD ) 31
3.2.4壓電基材的插入損失( insertion loss,IL ) 31
3.3指叉式電極轉換器( interdigital transducers,IDT ) 32
3.4表面聲波元件感測機制 37
3.6頻率飄移效應 38
3.7質量負載效應 39
4. 表面聲波感測元件與系統設計 40
4.1表面聲波晶片製備 40
4.1.1表面聲波晶片設計 40
4.1.2黃光製程 42
4.2塗佈感測薄膜 47
4.2.1高分子塗佈方式 47
4.2.2高分子吸附形式 48
4.2.3高分子選擇 49
4.3電路設計 52
4.3.1振盪電路設計 52
4.4量測系統與環境 55
4.4.1實驗所用之儀器 55
4.4.2微型腔體設計 60
4.4.3整體量測系統與環境 62
5. 實驗結果 64
5.1穩定性測試 64
5.1.1溫度穩定性測試 64
5.1.2表面狀態穩定性測試 67
5.1.3 2-ports穩定度測試: 68
5.1.4 4-ports穩定度測試: 70
5.2感測材料造成之頻率飄移量 74
5.3氨氣測量結果 77
5.4甲烷測量結果 80
5.5 4-ports單一高分子單一氣體量測 83
5.6 4-ports不同高分子單一氣體量測 87
5.6 4-ports不同高分子混合氣體量測 91
5.7混合性氣體濃度分析 95
6. 結論與未來展望 103
7. 參考文獻 106
[1] S. Deshmukh, R. Bandyopadhyay, N. Bhattacharyya, R. A. Pandey, and A. Jana, "Application of electronic nose for industrial odors and gaseous emissions measurement and monitoring – An overview," Talanta, vol. 144, pp. 329-340, 2015.
[2] M. Y. Vagin and F. Winquist, "Electronic noses and tongues in food safety assurance," Biosensor Technologies, Hyperspectral Imaging and Practical Applications, pp. 264-283, 2015.
[3] J. Poprawski, P. Boilot, and F. Tetelin, "Counterfeiting and quantification using an electronic nose in the perfumed cleaner industry," Sensors and Actuators B: Chemical, vol. 116, pp. 156-160, 2006.
[4] S. Trirongjitmoah, Z. Juengmunkong, K. Srikulnath, and P. Somboon, "Classification of garlic cultivars using an electronic nose," Computers and Electronics in Agriculture, vol. 113, pp. 148-153, 2015.
[5] V. B. Raj, H. Singh, A. T. Nimal, M. U. Sharma, and V. Gupta, "Oxide thin films (ZnO, TeO2, SnO2, and TiO2) based surface acoustic wave (SAW) E-nose for the detection of chemical warfare agents," Sensors and Actuators B: Chemical, vol. 178, pp. 636-647, 2013.
[6] J. P. Black, A. Elium, and R. M. White, "6D-2 MEMS-Enabled Miniaturized Particulate Matter Monitor Employing 1.6 GHz Aluminum Nitride Thin-Film Bulk Acoustic Wave Resonator (FBAR) and Thermophoretic Precipitator," researchgate, 2015.
[7] L.Rayleigh, "On waves propagated along the plane surface of an elastic solid," Proc. London Math., vol. 17, p. 4, 1885.
[8] 楊啟榮, 李清鋒, and 施建富, "表面聲波生化感測器原理與應用技術," 2004.
[9] R. M. White, "Direct piezoelectric coupling to surface elastic waves," Appl. Phys. Lett., vol. 7, pp. 314-316, 1965.
[10] H. Wohltjen and R. Dessy, "Surface acoustic wave probe for chemical analysis. I. Introduction and instrument description," Analytical Chemistry, vol. 51, pp. 1458-1464, 1979.
[11] D. Pestov, O. Guney-Altay, N. Levit, and G. Tepper, "Improving the stability of surface acoustic wave (SAW) chemical sensor coatings using photopolymerization," Sensors and Actuators B: Chemical, vol. 126, pp. 557-561, 2007.
[12] W. Wen, H. Shitang, L. Shunzhou, L. Minghua, and P. Yong, "Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator," Sensors and Actuators B: Chemical, vol. 125, pp. 422-427, 2007.
[13] A. Bryant, D. L. Lee, and J. F. Vetelino, "A Surface Acoustic Wave Gas Detector," in 1981 Ultrasonics Symposium, 1981, pp. 171-174.
[14] "Individual sensitivity to odorants: genetic causes and molecular mechanisms," 2013.
[15] M. T. Shipley and A. C. Puche, "Olfactory Glomeruli: Structure and Circuitry," in Encyclopedia of Neuroscience, L. R. Squire, Ed., ed Oxford: Academic Press, pp. 119-127,2009.
[16] L. Buck and R. Axel, "A novel multigene family may encode odorant receptors: a molecular basis for odor recognition," Cell, vol. 65, pp. 175-187, 1991.
[17] Y. Haitao, X. Pengcheng, X. Xiaoyuan, L. Dong-Weon, and L. Xinxin, "Micro-/Nanocombined Gas Sensors With Functionalized Mesoporous Thin Film Self-Assembled in Batches Onto Resonant Cantilevers," Industrial Electronics, IEEE Transactions on, vol. 59, pp. 4881-4887, 2012.
[18] S. J., H. J.E., F. N.A., and A. M.F., "Th e selection of sensors.," Prog. Mater. Sci. , vol. 46, pp. 461–504, 2001.
[19] S. J.R., P. W.R., and Y. S., "Sensors, chemical sensors, electrochemical sensors, and ECS.," J. Electrochem. Soc., vol. 150(2), pp. S11-S16, 2003.
[20] G. Korotcenkov, "Chemical Sensors ".
[21] S. Salehi, E. Nikan, A. A. Khodadadi, and Y. Mortazavi, "Highly sensitive carbon nanotubes–SnO2 nanocomposite sensor for acetone detection in diabetes mellitus breath," Sensors and Actuators B: Chemical, vol. 205, pp. 261-267,2014.
[22] S. De Prins, E. Dons, M. Van Poppel, L. Int Panis, E. Van de Mieroop, V. Nelen, et al., "Airway oxidative stress and inflammation markers in exhaled breath from children are linked with exposure to black carbon," Environment International, vol. 73, pp. 440-446, 2014.
[23] M. N., K. S.A., Y. M.H., and B. P.J., "Disease Markers in Exhaled Breath. ," 2005.
[24] K. L. Moskalenko, A. I. Nadezhdinskii, and I. A. Adamovskaya, "Human breath trace gas content study by tunable diode laser spectroscopy technique," Infrared Physics & Technology, vol. 37, pp. 181-192, 1996.
[25] T. H. Risby and J. H. Med., "Trace gas analysis in exhaled human breath for disease diagnosis," Lasers and Electro-Optics,, vol. 2, 2005.
[26] H. Aikata, H. Takaishi, Y. Kawakami, S. Takahashi, M. Kitamoto, T. Nakanishi, et al., "Telomere Reduction in Human Liver Tissues with Age and Chronic Inflammation," Experimental Cell Research, vol. 256, pp. 578-582, 2000.
[27] P. H. Ku, C. Y. Hsiao, M. J. Chen, T. H. Lin, Y. T. Li, S. C. Liu, et al., "Polymer/Ordered Mesoporous Carbon Nanocomposite Platelets as Superior Sensing Materials for Gas Detection with Surface Acoustic Wave Devices," presented at the Langmuir, 2012.
[28] N. Bârsan and U. Weimar, "Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO 2 sensors in the presence of humidity," Journal of Physics: Condensed Matter, vol. 15, p. R813, 2003.
[29] W. Weppner, "Solid-state electrochemical gas sensors," Sensors and Actuators, vol. 12, pp. 107-119, 1987.
[30] P. JASIŃSKI, "Solid-state electrochemical gas sensors," Materials Science-Poland, vol. Vol. 24, No. 1, 2006.
[31] H. Wu, L. Dong, H. Zheng, X. Liu, X. Yin, W. Ma, et al., "Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1582 nm DFB laser," Sensors and Actuators B: Chemical, vol. 221, pp. 666-672, 2015.
[32] M. Thompson, Surface-Launched Acoustic Wave Sensors, 1997.
[33] C. B. Hirschmann, S. Sinisalo, J. Uotila, S. Ojala, and R. L. Keiski, "Trace gas detection of benzene, toluene, p-, m- and o-xylene with a compact measurement system using cantilever enhanced photoacoustic spectroscopy and optical parametric oscillator," Vibrational Spectroscopy, vol. 68, pp. 170-176, 2013.
[34] C.-Y. Shen and S.-Y. Liou, "Surface acoustic wave gas monitor for ppm ammonia detection," Sensors and Actuators B: Chemical, vol. 131, pp. 673-679, 2008.
[35] G. Bidan, "Electroconducting conjugated polymers: New sensitive matrices to build up chemical or electrochemical sensors. A review," Sensors and Actuators B: Chemical, vol. 6, pp. 45-56, 1992.
[36] L. Zhang, F. Meng, Y. Chen, J. Liu, Y. Sun, T. Luo, et al., "A novel ammonia sensor based on high density, small diameter polypyrrole nanowire arrays," Sensors and Actuators B: Chemical, vol. 142, pp. 204-209, 2009.
[37] P. Pacher, A. Lex, S. Eder, G. Trimmel, C. Slugovc, E. J. List, et al., "A novel concept for humidity compensated sub-ppm ammonia detection," Sensors and Actuators B: Chemical, vol. 145, pp. 181-184, 2010.
[38] H. T. Nagle, R. Gutierrez-Osuna, and S. S. Schiffman, "The how and why of electronic noses," Spectrum, IEEE, vol. 35, pp. 22-31, 1998.
[39] P. Gaudillat, A. Wannebroucq, J.-M. Suisse, and M. Bouvet, "Bias and humidity effects on the ammonia sensing of perylene derivative/lutetium bisphthalocyanine MSDI heterojunctions," Sensors and Actuators B: Chemical, vol. 222, pp. 910-917, 2016.
[40] L. R. Shobin and S. Manivannan, "Optically transparent, electrically conducting single walled carbon nanotubes random networks for room temperature ammonia vapor sensing," Materials Science in Semiconductor Processing, vol. 40, pp. 931-938, 2015.
[41] Y. Yutaro, A. Shingo, N. Hiroki, S. Toshihiro, N. Noritaka, T. Toshihiro, et al., "Development of Multiple-Gas Analysis Method Using the Ball Surface Acoustic Wave Sensor," Japanese Journal of Applied Physics, vol. 49, p. 07HD14, 2010.
[42] P. M. Moubarak, P. Ben-Tzvi, and M. E. Zaghloul, "A Self-Calibrating Mathematical Model for the Direct Piezoelectric Effect of a New MEMS Tilt Sensor," Sensors Journal, IEEE, vol. 12, pp. 1033-1042, 2012.
[43] J. W. Gardner, V. K. Varadan, and O. O. Awadelkarim, Microsensors, MEMS, and smart devices vol. 1: Wiley Online Library, 2001.
[44] amjanovic and Dragan, "Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics," Reports on Progress in Physics, vol. 61, pp. 1267–1324, 1998.
[45] 吳朗, 電子陶瓷: 壓電陶瓷: 全欣, 1994.
[46] C. K. Campbell, Surface acoustic wave devices for mobile and wireless communications: Academic Press, 1998.
[47] H. Tanaka, "Suppression of bulk-wave responses in SAW devices using the difference of power flow angles," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 42, pp. 938-942, 1995.
[48] T.-T. Wu, Z.-C. Hsu, and Z.-G. Huang, "Band gaps and the electromechanical coupling coefficient of a surface acoustic wave in a two-dimensional piezoelectric phononic crystal," Physical Review B, vol. 71, p. 064303, 2005.
[49] J. W. Gardner, H. W. Shin, E. L. Hines, and C. S. Dow, "An electronic nose system for monitoring the quality of potable water," Sensors and Actuators B: Chemical, vol. 69, pp. 336-341, 2000.
[50] S. Letcher, "Surface acoustic wave devices," Oceanic Engineering, IEEE Journal of, vol. 11, pp. 487-488, 1986.
[51] H. Ken-Ya, "Surface acoustic wave devices in telecommunications modelling and simulation," NY: Springer, 2000.
[52] C. Campbell, Surface acoustic wave devices and their signal processing applications: Elsevier, 2012.
[53] J. Kirschner, "Surface Acoustic Wave Sensors (SAWS)."
[54] J. W. Grate and R. A. McGill, "Dewetting effects on polymer-coated surface acoustic wave vapor sensors," Analytical Chemistry, vol. 67, pp. 4015-4019, 1995.
[55] G. Socrates, Infrared and Raman characteristic group frequencies: tables and charts: John Wiley & Sons, 2004.
[56] 鄭期元, "表面聲波氣體感測器運用於香菸偵測," 2015.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *