|
1. Egan, M.E. and M.S. Lipsky, Diagnosis of vaginitis. American family physician, 2000. 62(5): p. 1095-1104. 2. Watelet, J.-B., et al., Collection of nasal secretions for immunological analysis. European Archives of Oto-Rhino-Laryngology and Head & Neck, 2004. 261(5): p. 242-246. 3. Giampaoli, S., et al., Molecular identification of vaginal fluid by microbial signature. Forensic Science International: Genetics, 2012. 6(5): p. 559-564. 4. Fleming, R.I. and S. Harbison, The use of bacteria for the identification of vaginal secretions. Forensic Science International: Genetics, 2010. 4(5): p. 311-315. 5. Sakurada, K., et al., Expression of statherin mRNA and protein in nasal and vaginal secretions. Legal Medicine, 2011. 13(6): p. 309-313. 6. How do you collect vaginal secretions. Clinical Diagnostic Research, 2007. 7. Tong, S.-W., et al., Methods of collecting and transporting vaginal discharge for detection of infectious organisms and to facilitate cervical cancer screening. 2009, Google Patents. 8. Carozzi, F., et al., New Technologies for Cervival Cancer Screening (NTCC) Working Group Use of p16-INK4A overexpression to increase the specificity of human papillomavirus testing: a nested substudy of the NTCC randomised controlled trial. Lancet Oncol, 2008. 9: p. 937-945. 9. Willyard, C., pH paper trumps expensive kits in measuring acidity. Nature medicine, 2007. 13(10): p. 1128-1129. 10. Contente, A., B.F. Rose, and R.C. Potter, Vaginal discharge collection device and intravaginal drug delivery system. 1994, Google Patents. 11. Sweet, R.L., et al., Infectious diseases of the female genital tract. 2002: Lippincott Williams & Wilkins Philadelphia, PA. 12. Carr, P.L., D. Felsenstein, and R.H. Friedman, Evaluation and management of vaginitis. Journal of general internal medicine, 1998. 13(5): p. 335-346. 13. Sobel, J., Vulvovaginitis in healthy women. Comprehensive therapy, 1999. 25(6-7): p. 335-346. 14. Hillier, S.L., Diagnostic microbiology of bacterial vaginosis. American journal of obstetrics and gynecology, 1993. 169(2): p. 455-459. 15. Hill, G.B., The microbiology of bacterial vaginosis. American journal of obstetrics and gynecology, 1993. 169(2): p. 450-454. 16. Kent, H.L., Epidemiology of vaginitis. American journal of obstetrics and gynecology, 1991. 165(4): p. 1168-1176. 17. Horowitz, B.J., D. Giaquinta, and S. Ito, Evolving pathogens in vulvovaginal candidiasis: implications for patient care. The Journal of Clinical Pharmacology, 1992. 32(3): p. 248-255. 18. Sobel, J.D., Vaginitis. New England Journal of Medicine, 1997. 337(26): p. 1896-1903. 19. Petrin, D., et al., Clinical and microbiological aspects ofTrichomonas vaginalis. Clinical microbiology reviews, 1998. 11(2): p. 300-317. 20. Lossick, J.G. and H.L. Kent, Trichomoniasis: trends in diagnosis and management. American journal of obstetrics and gynecology, 1991. 165(4): p. 1217-1222. 21. Sexuality, Fertility, and Sexually Transmitted Infections (Maternal and Newborn Nursing) http://what-when-how.com/nursing/sexuality-fertility-and-sexually-transmitted-infections-maternal-and-newborn-nursing-part-5/]. 22. Defining Cancer. National Cancer Institute., 2014. 23. Endometrial Cancer Treatment National Cancer Institute, 2014. 24. Kong, A., et al., Adjuvant radiotherapy for stage I endometrial cancer. The Cochrane Library, 2012. 25. What You Need To Know: Endometrial Cancer. National Cancer Institute, 2014. 26. Amant, F., et al., Endometrial cancer. Lancet, 2005. 366(9484): p. 491-505. 27. Johnson, K. Brachytherapy Boosts Survival in Inoperable Endometrial Cancer. 2015 April 27]; http://www.medscape.com/viewarticle/843771]. 28. Kurman, R.J., P.F. Kaminski, and H.J. Norris, The behavior of endometrial hyperplasia. A long-term study of" untreated" hyperplasia in 170 patients. Obstetrical & Gynecological Survey, 1986. 41(1): p. 58-61. 29. Costales, A.B., et al., Clinically significant endometrial cancer risk following a diagnosis of complex atypical hyperplasia. Gynecologic oncology, 2014. 135(3): p. 451-454. 30. Gungorduk, K., et al., A Novel Preoperative Scoring System for Predicting Endometrial Cancer in Patients with Complex Atypical Endometrial Hyperplasia and Accuracy of Frozen Section Pathological Examination in This Context: A Multicenter Study. Gynecologic and obstetric investigation, 2015. 79(1): p. 50-56. 31. 癌症防治組, 衛生福利部國民健康署公布2011年新發生癌症人數及排名. 2014. 32. Martinez, A.W., et al., Patterned paper as a platform for inexpensive, low‐volume, portable bioassays. Angewandte Chemie International Edition, 2007. 46(8): p. 1318-1320. 33. Bruzewicz, D.A., M. Reches, and G.M. Whitesides, Low-Cost Printing of Poly(dimethylsiloxane) Barriers To Define Microchannels in Paper. Analytical Chemistry, 2008. 80(9): p. 3387-3392. 34. Martinez, A.W., et al., Simple Telemedicine for Developing Regions: Camera Phones and Paper-Based Microfluidic Devices for Real-Time, Off-Site Diagnosis. Analytical Chemistry, 2008. 80(10): p. 3699-3707. 35. Martinez, A.W., et al., FLASH: A rapid method for prototyping paper-based microfluidic devices. Lab on a Chip, 2008. 8(12): p. 2146-2150. 36. Martinez, A.W., S.T. Phillips, and G.M. Whitesides, Three-dimensional microfluidic devices fabricated in layered paper and tape. Proceedings of the National Academy of Sciences, 2008. 105(50): p. 19606-19611. 37. Abe, K., K. Suzuki, and D. Citterio, Inkjet-printed microfluidic multianalyte chemical sensing paper. Analytical chemistry, 2008. 80(18): p. 6928-6934. 38. Cheng, C.-M., et al., Millimeter-scale contact printing of aqueous solutions using a stamp made out of paper and tape. Lab on a Chip, 2010. 10(23): p. 3201-3205. 39. Fenton, E.M., et al., Multiplex lateral-flow test strips fabricated by two-dimensional shaping. ACS Appl Mater Interfaces, 2009. 1(1): p. 124-9. 40. Nie, Z., et al., Electrochemical sensing in paper-based microfluidic devices. Lab on a Chip, 2010. 10(4): p. 477-483. 41. Lu, Y., et al., Rapid prototyping of paper‐based microfluidics with wax for low‐cost, portable bioassay. Electrophoresis, 2009. 30(9): p. 1497-1500. 42. Fu, E., et al., Transport in two-dimensional paper networks. Microfluidics and nanofluidics, 2011. 10(1): p. 29-35. 43. Osborn, J.L., et al., Microfluidics without pumps: reinventing the T-sensor and H-filter in paper networks. Lab on a Chip, 2010. 10(20): p. 2659-2665. 44. Struss, A., et al., Paper strip whole cell biosensors: a portable test for the semiquantitative detection of bacterial quorum signaling molecules. Analytical chemistry, 2010. 82(11): p. 4457-4463. 45. Carrilho, E., et al., Paper microzone plates. Analytical chemistry, 2009. 81(15): p. 5990-5998. 46. Pérez, S. and E. Fàbregas, Amperometric bienzymatic biosensor for L-lactate analysis in wine and beer samples. Analyst, 2012. 137(16): p. 3854-3861. 47. Owen, D.H. and D.F. Katz, A vaginal fluid simulant. Contraception, 1999. 59(2): p. 91-95. 48. Caillouette, J.C., et al., Vaginal pH as a marker for bacterial pathogens and menopausal status. American Journal of Obstetrics and Gynecology, 1997. 176(6): p. 1270-1277. 49. Donders, G., et al., Predictive value for preterm birth of abnormal vaginal flora, bacterial vaginosis and aerobic vaginitis during the first trimester of pregnancy. BJOG: An International Journal of Obstetrics & Gynaecology, 2009. 116(10): p. 1315-1324. 50. El Nahhal, I.M., et al., Thin film optical BTB pH sensors using sol–gel method in presence of surfactants. International Nano Letters, 2012. 2(1): p. 1-9. 51. Bueno, C., et al., The Excited‐State Interaction of Resazurin and Resorufin with Aminesin Aqueous Solutions. Photophysics and Photochemical Reaction¶. Photochemistry and photobiology, 2002. 76(4): p. 385-390. 52. Moller, B. and P. Kaspersen, Vaginitis and vaginosis. 1992, Wiley-Liss, New York. 53. Kontula, K., et al., Binding of progestins to the glucocorticoid receptor: correlation to their glucocorticoid-like effects on in vitro functions of human mononuclear leukocytes. Biochemical pharmacology, 1983. 32(9): p. 1511-1518. 54. Kristiansen, M., et al., Identification, synthesis, and characterization of new glycogen phosphorylase inhibitors binding to the allosteric AMP site. Journal of medicinal chemistry, 2004. 47(14): p. 3537-3545. 55. Roach, P.J., Glycogen and its metabolism. Curr Mol Med, 2002. 2(2): p. 101-20. 56. Childs, R.E. and W.G. Bardsley, The steady-state kinetics of peroxidase with 2, 2'-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen. Biochem. J, 1975. 145: p. 93-103. 57. Bateman Jr, R.C. and J.A. Evans, Using the glucose oxidase/peroxidase system in enzyme kinetics. Journal of Chemical Education, 1995. 72(12): p. A240. 58. Yang, S. and R.E. Rothman, PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. The Lancet Infectious Diseases, 2004. 4(6): p. 337-348. 59. Marsh, P. and D.N. Cardy, Molecular Diagnostics, in Genomics, Proteomics, and Clinical Bacteriology, N. Woodford and A. Johnson, Editors. 2004, Humana Press. p. 167-189. 60. Raux, G., et al., Molecular diagnosis of autosomal dominant early onset Alzheimer’s disease: an update. Journal of Medical Genetics, 2005. 42(10): p. 793-795. 61. Molecular Diagnostics Market Expected to Reach USD 8.7 Billion through 2019: TMR. transparency market research, 2014. 62. Grody, W.W., et al., Molecular diagnostics: techniques and applications for the clinical laboratory. 2009: Academic Press. 63. Espy, M., et al., Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clinical microbiology reviews, 2006. 19(1): p. 165-256. 64. Paik, S., et al., A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. New England Journal of Medicine, 2004. 351(27): p. 2817-2826. 65. Handyside, A.H., et al., Birth of a normal girl after in vitro fertilization and preimplantation diagnostic testing for cystic fibrosis. New England Journal of Medicine, 1992. 327(13): p. 905-909. 66. Lemna, W.K., et al., Mutation analysis for heterozygote detection and the prenatal diagnosis of cystic fibrosis. New England Journal of Medicine, 1990. 322(5): p. 291-296. 67. Tang, Y.-W. and C.-Y. Ou, Past, present and future molecular diagnosis and characterization of human immunodeficiency virus infections. Emerg Microbes Infect, 2012. 1: p. e19. 68. Singer, J.M. and C.M. Plotz, The latex fixation test: I. Application to the serologic diagnosis of rheumatoid arthritis. The American Journal of Medicine, 1956. 21(6): p. 888-892. 69. Berson, S.A. and R.S. Yalow, Quantitative aspects of the reaction between insulin and insulin-binding antibody. Journal of Clinical Investigation, 1959. 38(11): p. 1996. 70. Gan, S.D. and K.R. Patel, Enzyme Immunoassay and Enzyme-Linked Immunosorbent Assay. J Invest Dermatol, 2013. 133(9): p. e12. 71. Overview of ELISA. Thermo Fisher Scientific Inc. 72. Simpson, R.J., et al., Interleukin-6: structure-function relationships. Protein Sci, 1997. 6(5): p. 929-55. 73. Petersen, A.M.W. and B.K. Pedersen, The anti-inflammatory effect of exercise. Journal of applied physiology, 2005. 98(4): p. 1154-1162. 74. Bellone, S., et al., High serum levels of interleukin-6 in endometrial carcinoma are associated with uterine serous papillary histology, a highly aggressive and chemotherapy-resistant variant of endometrial cancer. Gynecologic oncology, 2005. 98(1): p. 92-98. 75. Friedenreich, C.M., et al., Case–control study of inflammatory markers and the risk of endometrial cancer. European Journal of Cancer Prevention, 2013. 22(4): p. 374-379. 76. Rao, N.V., et al., Characterization of proteinase-3 (PR-3), a neutrophil serine proteinase. Structural and functional properties. J Biol Chem, 1991. 266(15): p. 9540-8. 77. Sturrock, A., et al., Characterization and localization of the genes for mouse proteinase-3 (Prtn3) and neutrophil elastase (Ela2). Cytogenetic and Genome Research, 1998. 83(1-2): p. 104-108. 78. Kamat, A.A., et al., Clinical and biological significance of vascular endothelial growth factor in endometrial cancer. Clinical Cancer Research, 2007. 13(24): p. 7487-7495. 79. Peng, X., et al., [Clinical significance of vascular endothelial growth factor in sera of patients with gynaecological malignant tumors]. Ai zheng= Aizheng= Chinese journal of cancer, 2002. 21(2): p. 181-185. 80. Xu, H., et al., Anti-angiogenic effects of green tea catechin on an experimental endometriosis mouse model. Human reproduction, 2009. 24(3): p. 608-618. 81. Becker, C.M., et al., A novel noninvasive model of endometriosis for monitoring the efficacy of antiangiogenic therapy. The American journal of pathology, 2006. 168(6): p. 2074-2084. 82. McLaren, J., et al., Vascular endothelial growth factor (VEGF) concentrations are elevated in peritoneal fluid of women with endometriosis. Human Reproduction, 1996. 11(1): p. 220-223. 83. Agrawal, R., et al., Serum vascular endothelial growth factor (VEGF) in the normal menstrual cycle: association with changes in ovarian and uterine Doppler blood flow. Clinical endocrinology, 1999. 50(1): p. 101-106. 84. Raposo, G. and W. Stoorvogel, Extracellular vesicles: exosomes, microvesicles, and friends. The Journal of cell biology, 2013. 200(4): p. 373-383. 85. György, B., et al., Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cellular and molecular life sciences, 2011. 68(16): p. 2667-2688. 86. Ratajczak, J., et al., Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia, 2006. 20(9): p. 1487-1495. 87. Théry, C., L. Zitvogel, and S. Amigorena, Exosomes: composition, biogenesis and function. Nature Reviews Immunology, 2002. 2(8): p. 569-579. 88. Janowska‐Wieczorek, A., et al., Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. International journal of cancer, 2005. 113(5): p. 752-760. 89. Millimaggi, D., et al., Tumor Vesicle—Associated CD147 Modulates the Angiogenic Capability of Endothelial Cells. Neoplasia, 2007. 9(4): p. 349-357. 90. Al-Nedawi, K., et al., Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proceedings of the National Academy of Sciences, 2009. 106(10): p. 3794-3799. 91. Diaconu, A., Demersuri teoretico-aplicative pentru construcția și implementarea unor strategii de utilizare a feedback-ului formativ în școală. 2013. 92. Goldburg, W., Dynamic light scattering. American Journal of Physics, 1999. 67(12): p. 1152-1160. 93. Carr, B. and M. Wright, Nanoparticle tracking analysis. Innovations in Pharmaceutical Technology, 2008. 26: p. 38-40. 94. Schuck, P., Sedimentation analysis of noninteracting and self-associating solutes using numerical solutions to the Lamm equation. Biophysical Journal, 1998. 75(3): p. 1503-1512. 95. Van Der Pol, E., et al., Optical and non‐optical methods for detection and characterization of microparticles and exosomes. Journal of Thrombosis and Haemostasis, 2010. 8(12): p. 2596-2607. 96. Burg, T.P. and S.R. Manalis, Suspended microchannel resonators for biomolecular detection. Applied Physics Letters, 2003. 83(13): p. 2698-2700. 97. Platt, M., G.R. Willmott, and G.U. Lee, Resistive pulse sensing of analyte‐Induced multicomponent rod aggregation using tunable pores. Small, 2012. 8(15): p. 2436-2444. 98. Coumans, F.A.W., et al., Reproducible extracellular vesicle size and concentration determination with tunable resistive pulse sensing. 2014, 2014. 99. Chen, C., et al., Paper-based immunoaffinity devices for accessible isolation and characterization of extracellular vesicles. Microfluidics and Nanofluidics, 2014. 16(5): p. 849-856. 100. Wan, C.-Y. and T.A. Wilkins, A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Analytical biochemistry, 1994. 223(1): p. 7-12. 101. Kealey, D., Quantitative reflectometry—I: Principles and scope. Talanta, 1972. 19(12): p. 1563-1571. 102. Analysing Extracellular Vesicles using TRPS. IZON Science, 2015
|