帳號:guest(18.226.185.25)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張凱軍
作者(外文):Chang, Kai Chun
論文名稱(中文):Simulation Optimization for Designing Footwear Production Line
論文名稱(外文):製鞋業生產線設計之模擬最佳化
指導教授(中文):陳建良
指導教授(外文):James C. Chen
口試委員(中文):陳子立
陳盈彥
口試委員(外文):Chen, Tzu Li
Chen, Yin Yann
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:103034601
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:125
中文關鍵詞:反應曲面法生產線最佳化製鞋業模擬
外文關鍵詞:Response Surface Methodology (RSM)production lineoptimizationfootwear manufacturingsimulation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:267
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
傳統製鞋業在過去多以實務經驗評估及設定產線之系統參數,然而鞋業生產參數眾多,分析不易,且以實務經驗評斷之方式有失其客觀性。因此,本研究透過建立具代表性之模擬模式進行實驗設計以及反應曲面法,分析生產參數和關鍵績效指標間之關聯,求解製鞋業生產線之最佳參數設定。
本研究提出一模擬最佳化架構並以實際鞋廠生產數據進行實證研究,驗證該架構之可行性。其中,最佳化過程是先以篩選實驗確認候選生產參數對於績效指標有無顯著的影響,結果顯示:各作業間之在製品轉移批量、投料頻率、楦頭數量以及楦頭週轉率對於總產出、週期時間和機台利用率三項績效指標皆有顯著的影響。其後,再將被選定之生產參數進行實驗設計建立一階模型,探討該模型中之曲率反應。最後以反應曲面法和中心點複合式設計建構二階模型,透過曲面圖、等高線圖和反應曲面分析估計最佳參數設定以及該參數設定下績效指標之預測值。不僅如此,本研究亦藉由平穩點分析以及典型分析,辨別該預測值屬於極小值、極大值或為一平穩點。
實證研究主要分為單目標最佳化以及多目標最佳化兩部份,其中多目標最佳化是以渴望函數及最佳化軟體進行求解。實驗結果顯示不論單目標或多目標最佳化,其預測值皆較當前設定佳。
The aim of proposed research is to build a representative simulation model and implement experimental design and response surface methodology (RSM) to analyze the effect between system parameters and key performance indicators. Subsequently, the optimal setting of footwear production line can be determined.
A simulation optimization framework is proposed and validated by an empirical study. In the optimization process, transfer batch size, material arrival frequency, number of shoe lasts and the turnover of shoe last are the selected parameters. After screening factors, they are determined that they can affect throughput, cycle time and machine utilization significantly. The first-order model is built by experimental design in order to analyze the curvature effect of model. Furthermore, the second-order model is constructed by RSM and central composite design. An optimal setting and predicted response are evaluated through the contour, surface plots and analysis of response surface. Moreover, the stationary and canonical analysis are performed to identify whether predicted response is maximum, minimum or saddle point.
The empirical study is divided into two parts, single-objective and multi-objective optimization. The multi-objective is optimized by using desirability function and optimization software. The experiment result shows that both of their predicted responses are better than current setting.
摘要 I
Abstract II
致謝 III
Contents IV
List of Tables VI
List of Figures VIII
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Objectives 3
1.3 Organization of Thesis 4
Chapter 2 Literature Review 5
2.1 Simulation Optimization 5
2.2 Response Surface Methodology 7
2.3 Footwear Industry Simulation 8
Chapter 3 Problem Definition 12
3.1 Footwear Manufacturing System 12
3.1.1 Shoe Process and Shoe Model 13
3.1.2 Facility Description 15
3.2 Problem Statement 18
3.2.1 Decision Variables 20
Chapter 4 Simulation Optimization Framework 24
4.1 Simulation Model 25
4.1.1 Assumptions 27
4.1.2 Data Collection 28
4.1.3 Model Construction 28
4.1.4 Verification and Validation 30
4.2 Response Surface Methodology 32
4.3 Response Surface Design 37
4.3.1 Central Composite Circumscribed Design 38
4.3.2 Central Composite Inscribed Design 39
4.3.3 Central Composite Face-Centered Design 40
4.3.4 Box-Behnken Design 41


Chapter 5 Empirical Study 43
5.1 Experimental Design 43
5.1.1 Levels of Factors 44
5.2 Single-objective Optimization 46
5.2.1 Throughput 46
5.2.2 Machine Utilization 62
5.2.3 Cycle Time 77
5.2.4 Validation and Conclusion of Single-objective Optimization 88
5.3 Multi-objective Optimization 90
5.3.1 Meta-model 91
5.3.2 Desirability Function 97
5.3.3 LINGO 100
5.3.4 Validation and Conclusion of Multi-objective Optimization 104
Chapter 6 Conclusion 106
References 109
Appendices 113
Appendix A: Contour and Surface plots of Throughput 113
Appendix B: Contour and Surface plots of Machine Utilization 116
Appendix C: Contour and Surface plots of Multi-objective (TP) 120
Appendix D: Contour and Surface plots of Multi-objective (MU) 122
Appendix E: Contour and Surface plots of Multi-objective (CT) 124

APICCAPS (2015). World Footwear Yearbook 2015. Portuguese Footwear Components and Leather Goods Manufacturers’ Association.
Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response Surface Methodology (RSM) As a Tool for Optimization in Analytical Chemistry. The International Journal of Pure and Applied Analytical Chemistry, 76(5), 965-977.
Chang, K. H. (2015). Improving the Efficiency and Efficacy of Stochastic Trust-Region Response-Surface Method for Simulation Optimization. IEEE Transactions on Automatic Control, 60(5), 1235-1243.
Chang, K. H., & Hsieh, L. Y. (2016). Determination of Wafer Start Mix in Semiconductor Manufacturing During New Technology Ramp-up: Model, Solution Method, and an Empirical Study. IEEE Transactions on Systems Man Cybernetics-Systems, 46(2), 294-302.
Chang, M. Y., Tsai, G. J., & Houng, J. Y. (2006). Optimization of the Medium Composition for the Submerged Culture of Ganoderma Lucidum by Taguchi Array Design and Steepest Ascent Method. Enzyme and Microbial Technology, 38(3-4), 407-414.
Chang, S. C. (2014). Simulation Modeling and Analysis of Footwear Production Lines (Master’s thesis). National Tsing Hua University, Hsinchu, Taiwan.
Chen, J. C., Anggono, N., Putra, A. P., Chou, R., & Chang, E. S. (2014). Simulation Modeling and Analysis of Line Length and Batch Size in Footwear Factory. Fourth International Conference on Industrial Engineering and Operations Management (IEOM2014), 1173-1180.
Chen, J. C., Lee, H., Chiu, S., & Tseng, B. (2011). Productivity Improvement with Lean Production in Glove Manufacturing Industry. Key Engineering Materials, 450, 247-250.
Chen, J. C., Putra, A., Anggono, N., Wang, K., Lin, S., & Chen, C. (2014). Flexible Simulation Model for Multi-style Shoes Manufacturing: A Case Study. 2013 4th International Asia Conference on Industrial Engineering and Management Innovation (IEMI2013), 999-1008.
Chen, J. C., Putra, A. P., Anggono, N., Chen, J., & Su, Y.-S. (2014). Simulation Modeling and Analysis for Stitching Line of Footwear Industry. Fourth International Conference on Industrial Engineering and Operations Management (IEOM2014), 1099-1106.
Chen, J. C., Wirasambada, S., Pujawan, I. N., Wang, K., Wu, C., Lin, C., & Chiu, S. (2012). Minimizing Total Tardiness and Makespan for Hybrid Flow Shop Problem with Resource Constraint in Footwear Manufacturing. Asia Pacific Industrial Engineering & Management Systems Conference 2012, 1093-1099.
Chen, Y. Y., Lin, J. T., & Chen, T. L. (2011). A Two-phase Dynamic Dispatching Approach to Semiconductor Wafer Testing. Robotics and Computer-Integrated Manufacturing, 27(5), 889-901.
Cho, I. H., & Zoh, K. D. (2007). Photocatalytic Degradation of Azo Dye (Reactive Red 120) in TiO2/UV System: Optimization and Modeling Using a Response Surface Methodology (RSM) Based on the Central Composite Design. Dyes and Pigments, 75(3), 533-543.
Dang, Q.-V., & Pham, K. (2016). Design of a Footwear Assembly Line Using Simulation-based ALNS. Procedia CIRP, 40, 597-602.
Dengiz, B., Bektas, T., & Ultanir, A. E. (2006). Simulation Optimization Based DSS Application: A Diamond Tool Production Line in Industry. Simulation Modelling Practice and Theory, 14(3), 296-312.
Dengiz, B., & Belgin, O. (2014). Simulation Optimization of a Multi-stage Multi-product Paint Shop Line with Response Surface Methodology. Simulation: Transactions of the Society for Modeling and Simulation International, 90(3), 265-274.
Dengiz, B., Ic, Y. T., & Belgin, O. (2016). A Meta-model Based Simulation Optimization Using Hybrid Simulation-analytical Modeling to Increase the Productivity in Automotive Industry. Mathematics and Computers in Simulation, 120, 120-128.
Doerner, K. F. (2013). Simulation-Based Optimization of Transport Activities Within Cold Charge Steel Production. Proceedings of the 5th IEEE International Symposium on Logistics and Industrial Informatics (LINDI 2013), 66-73.
Eryilmaz, M. S. (2012). Analysis of Shoe Manufacturing Factory by Simulation of Production Processes. Southeast Europe Journal of Soft Computing, 1(1), 120-127.
Felberbauer, T., Schnirzer, R., & Altendorfer K. (2015). Comparing Different Simulation-based Optimisation Approaches for Simultaneous Optimisation of Production Planning Parameters. Simulation in Production and Logistics 2015, 367-376.
Gansterer, M., Almeder, C., & Hartl, R. F. (2014). Simulation-based Optimization Methods for Setting Production Planning Parameters. International Journal of Production Economics, 151, 206-213.
Ghadge, S. V., & Raheman, H. (2006). Process Optimization for Biodiesel Production from Mahua (Madhuca Indica) Oil Using Response Surface Methodology. Bioresource Technology, 97(3), 379-384.
Hsieh, L. Y., & Chang, K.-H. (2013). Yield Improvement on In-mold Decoration Manufacturing Through Parameter Optimization. International Journal of Precision Engineering and Manufacturing, 14(10), 1823-1828.
Hu, C. C., & Tsou, T. W. (2003). The Optimization of Specific Capacitance of Amorphous Manganese Oxide for Electrochemical Supercapacitors Using Experimental Strategies. Journal of Power Sources, 115(1), 179-186.
Jacobson, I. D., Townsend, M. A., & Allatta, J. T. (1993). Evaluation of New Technologies in a Shoe Manufacturing Plant Using Simulation. Simulation, 61(5), 303-313.
Jeang, A. (2003). Simultaneous Parameter and Tolerance Design for an Electronic Circuit Via Computer Simulation and Statistical Optimization. International Journal of Advanced Manufacturing Technology, 21(12), 1035-1041.
Jeang, A., & Chang, C. L. (2002). Concurrent Optimisation of Parameter and Tolerance Design Via Computer Simulation and Statistical Method. International Journal of Advanced Manufacturing Technology, 19(6), 432-441.
Karacan, F., Ozden, U., & Karacan, S. (2007). Optimization of Manufacturing Conditions for Activated Carbon from Turkish Lignite by Chemical Activation Using Response Surface Methodology. Applied Thermal Engineering, 27(7), 1212-1218.
Kleijnen, J. P. C. (1993). Simulation and Optimization in Production Planning: A Case Study. Decision Support Systems, 9(3), 269-280.
Law, A. M., & McComas, M. G. (1991). Secrets of Successful Simulation Studies. Proceedings of the 23rd Conference on Winter Simulation, 21-27.
Li, J. S., Ma, C. Q., Ma, Y. H., Li, Y., Zhou, W., & Xu, P. (2007). Medium Optimization by Combination of Response Surface Methodology and Desirability Function: An Application in Glutamine Production. Applied Microbiology and Biotechnology, 74(3), 563-571.
Mak, L. C., Wong, W. K., & Leung, Y. S. (2014). A Simulation Analysis of the Impact of Production Lot Size and Its Interaction with Operator Competence on Manufacturing System Performance. Simulation Modelling Practice and Theory, 49, 203-214.
Marques, A. F., Mujica, M., de Sousa, J. P., Sá Marques, P., Rebelo, R., & Alves, A. C. (2013). An Innovative Framework for the Simulation of Manufacturing Systems: An Application to the Footwear Industry. In A. Azevedo (Ed.), Advances in Sustainable and Competitive Manufacturing Systems: 23rd International Conference on Flexible Automation & Intelligent Manufacturing (pp. 219-231). Switzerland: Springer International Publishing.
Melouk, S. H., Freeman, N. K., Miller, D., & Dunning, M. (2013). Simulation Optimization-based Decision Support Tool for Steel Manufacturing. International Journal of Production Economics, 141(1), 269-276.
Miller, S., & Pegden, D. (2000). Introduction to Manufacturing Simulation. Proceedings of the 2000 Winter Simulation Conference, 1, 63-66.
Montgomery, D. C. (2013). Design and Analysis of Experiments [International Student Version]. John Wiley & Sons, Inc.
Nisanci, H. I., & Sury, R. J. (1980). Production Analysis by Simulation in a Shoe Manufacturing Factory. International Journal of Production Research, 18(1), 31-41.
Rulkens, H. J. A., van Campen, E. J. J., van Herk, J., & Rooda, J. E. (1998). Batch Size Optimization of a Furnace and Pre-clean Area by Using Dynamic Simulations. Advanced Semiconductor Manufacturing Conference and Workshop, 1998. 1998 IEEE/SEMI, 439-444.
Sarker, B. R., & Parija, G. R. (1994). An Optimal Batch Size for a Production System Operating under a Fixed-Quantity, Periodic Delivery Policy. Journal of the Operational Research Society, 45(8), 891-900.
Shabbiri, K., Adnan, A., Noor, B., & Jamil, S. (2012). Optimized Production, Purification and Characterization of Alpha Amylase by DSM 20158, Using Bio-statistical Approach. Annals of Microbiology, 62(2), 523-532.
Su, Y. S. (2015). Simulation Modeling and Analysis for Footwear Stitching Lines (Master’s thesis). National Tsing Hua University, Hsinchu, Taiwan.
Suh, M. H., Lee, K. B., & Baick, S. C. (2012). Optimization of the Spreadable Modified Butter Manufacturing by Response Surface Methodology. Korean Journal for Food Science of Animal Resources, 32(6), 783-788.
Voorhorst, F. A., Avai, A., & Boer, C. R. (2012). Optimizing a Highly Flexible Shoe Production Plant Using Simulation. In S. Bangsow. (Ed.), Use Cases of Discrete Event Simulation: Appliance and Research (pp. 131-145). Heidelberg: Springer Berlin Heidelberg.
Yao, C. L., Liu, C. H., Chu, I. M., Hsieh, T. B., & Hwang, S. M. (2003). Factorial Designs Combined with the Steepest Ascent Method to Optimize Serum-free Media for Ex Vivo Expansion of Human Hematopoietic Progenitor Cells. Enzyme and Microbial Technology, 33(4), 343-352.
張國華(民101)。實驗設計。臺中市:滄海書局。
黎正中(譯)(民99)。實驗設計與分析(原作者:D. C. Montgomery)。新北市:高立圖書(原著出版年:2009)。
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *