帳號:guest(18.218.119.28)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鍾力善
作者(外文):Chung, Li Shan
論文名稱(中文):以R語言為基礎建構之專利分析方法論:以3D列印應用於生醫領域為例
論文名稱(外文):A Patent Analysis Algorithm Based on R Language: The Case of 3D Printing Applied in Biomedical Field
指導教授(中文):張瑞芬
指導教授(外文):Amy Trappey
口試委員(中文):張力元
陳怡文
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:103034561
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:55
中文關鍵詞:積層製造生物醫學專利分析R語言專利演進分析
外文關鍵詞:additive manufacturingbiomedicalpatent analysisR languagepatent evolution analysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:299
  • 評分評分:*****
  • 下載下載:1
  • 收藏收藏:0
積層製造,或稱3D列印,此項技術已經成為世界上最熱門的技術之一。積層製造可製造不規則且小型的客製化產品,其能製造不規則形狀且客製化的特質非常適合用來製造用於生醫領域的相關產品,這些積層製造的應用已經創造出很大的商機。本研究發展了一基於R語言建構之專利分析演算法,用以探索積層製造技術在生醫領域的發展趨勢。首先從全球的專利資料庫蒐集相關的專利文件,接著利用文字探勘擷取出關鍵字詞。本研究訂定了一組選字的規則,用以避免選取過多相似關鍵字所造成的偏差。基於被選取的關鍵字,本研究建構出相似度矩陣以及進行群集驗證。透過群集驗證,可得到最佳的分群參數來進行分群,並重新定義與調整得出一最終的分群結果。最後使用最終的分群結果來進行專利演進分析,透過圖像化的方式呈現出技術趨勢的走向,此專利演進分析圖可以幫助找出技術領域中具潛力的研究機會。本研究發展一基於R語言建構之專利分析演算法可以幫助擷取專利中的資訊與專利發展的趨勢,用以幫助制定技術發展策略與避免專利侵權。
Additive manufacturing (AM) or 3D printing has become one of the most popular technologies in the world. AM technology is capable 0of manufacturing regular as well as irregular shapes for small batches of customized products. The ability to customize unusually curved and rounded shapes makes the process particularly suitable for prosthetic products used in biomedical applications. These AM applications have created a substantial and sustainable market opportunity. This research develops a patent analysis algorithm based on R language to explore AM technology development trends applied in the biomedical field. First, the related patents are collected from a global patent database. Next, the key terms are extracted dynamically using text mining. This research derives a key terms selecting rule in order to reduce the bias of choosing similar terms. The extracted key terms form the base for similarity analysis and cluster validation. After cluster validation, the best clustering parameters are set to create clusters. According to the clustering result, some adjustments are made to refine the results into meaningful sets. Finally, the adjusted clustering result is used an import for patent evolution analysis which graphically displays the technology development trends. The patent evolution figure helps identify potential R&D opportunities in this technical field. The research provides a patent analysis algorithm based on R language, and this algorithm helps to extract information from patent documents to depict the trends of patent development. The extracted information and the trends of patent development help researchers and policy analysts formulate development strategies while avoiding patent infringement litigation.
Table of Content
中文摘要 I
Abstract II
List of Figures IV
List of Tables V
1. Introduction 1
1.1. Research Background 1
1.2. Research Motivation 2
1.3. Research Framework and Procedure 3
2. Literature Review 4
2.1. 3D Printing Technology 4
2.2. Patent Analysis 5
2.3. Text Mining 6
2.4. R for Text Mining, Cluster Validation, and Clustering 7
3. Methodology 8
3.1. Key Term Extraction 9
3.2. Cosine Similarity Analysis 12
3.3. Cluster Validation 13
3.4. Clustering 16
3.4.1. Hierarchical Clustering 16
3.4.2. K-means Clustering 17
3.4.3. K-mediods Clustering 18
3.5. Patent Evolution Analysis 19
4. Case Analysis of Bio-AM Patents and Projects 22
4.1. Key Terms Extraction and Similarity Matrix 24
4.2. Clustering Result Validation and Clustering Adjustment 27
4.3. Bio-AM Technology Evolution Analysis 30
5. Conclusions 41
References 43
Appendix A 47
Appendix B 50
Appendix C 51
Appendix D 52
Appendix E 53
Appendix F 54
Appendix G 55

1. Banks, J. (2012). Adding value in additive manufacturing: researchers in the United Kingdom and Europe look to 3D printing for customization. IEEE pulse, 4(6), 22-26.
2. Bermudez-Edo, M., Hurtado, M. V., Noguera, M., & Hurtado-Torres, N. (2015). Managing technological knowledge of patents: HCOntology, a semantic approach. Computers in Industry 72, 1-13.
3. Birkhoff, G., (1973). Lattice Theory, American Math. Society College Publishers, Providence.
4. Birtchnell, T., Böhme, T., & Gorkin, R. (2016). 3D printing and the third mission: The university in the materialization of intellectual capital. Technological Forecasting and Social Change.
5. Brock, G., Pihur, V., Datta, S., & Datta, S. (2008). clValid, an R package for cluster validation. Journal of Statistical Software 25(4), 1-22.
6. Daim, T. U., Rueda, G., Martin, H., & Gerdsri, P. (2006). Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological Forecasting and Social Change, 73(8), 981-1012.
7. De Maio, C., Fenza, G., Loia, V., & Senatore, S. (2012). Hierarchical web resources retrieval by exploiting fuzzy formal concept analysis. Information Processing & Management, 48(3), 399-418.
8. Fattori, M., Pedrazzi, G., & Turra, R. (2003). Text mining applied to patent mapping: a practical business case. World Patent Information, 25(4), 335-342.
9. Feinerer, I. (2015). Introduction to the tm Package Text Mining in R. 2013-12-01]. http://www, dainf, ct. utfpr, edu. br/-kaestner/Min-eracao/RDataMining/tm, pdf.
10. Gibson, I., Rosen, D. W., & Stucker, B. (2010). Additive manufacturing technologies (pp. 1-3). New York: Springer.
11. Gross, B. C., Erkal, J. L., Lockwood, S. Y., Chen, C., & Spence, D. M. (2014). Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Analytical chemistry, 86(7), 3240-3253.
12. Hornik, K., 2015, Package ‘NLP’.
13. Hoy, M. B. (2013). 3D printing: making things at the library. Medical reference services quarterly, 32(1), 93-99.
14. Ihaka, R., & Gentleman, R. (1996). R: a language for data analysis and graphics. Journal of computational and graphical statistics, 5(3), 299-314.
15. Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM computing surveys (CSUR), 31(3), 264-323.
16. Jun, S. (2011). IPC Code Analysis of Patent Documents Using Association Rules and Maps–Patent Analysis of Database Technology. In Database Theory and Application, Bio-Science and Bio-Technology (pp. 21-30). Springer Berlin Heidelberg.
17. Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., & Wu, A. Y. (2002). An efficient k-means clustering algorithm: Analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 881-892.
18. Kaufman, L., & Rousseeuw, P. J. (1990). Partitioning around medoids (program PAM). Finding groups in data: an introduction to cluster analysis, 68-125. John Wiley & Sons, Inc., Hoboken, NJ, USA.
19. Kim, Y. G., Suh, J. H., & Park, S. C. (2008). Visualization of patent analysis for emerging technology. Expert Systems with Applications, 34(3), 1804-1812.
20. Klein, G. T., Lu, Y., & Wang, M. Y. (2013). 3D printing and neurosurgery—ready for prime time?. World neurosurgery, 80(3), 233-235.
21. Lee, C., Jeon, J., & Park, Y. (2011). Monitoring trends of technological changes based on the dynamic patent lattice: A modified formal concept analysis approach. Technological Forecasting and Social Change, 78(4), 690-702.
22. Lee, L. C., 2015, “Using patent evolution to analyze the development trends of 3D printing application on biomedical,” Master’s thesis, Department Industrial Engineering and Engineering Management, National Tsing Hua University.
23. Lee, S., Yoon, B., & Park, Y. (2009). An approach to discovering new technology opportunities: Keyword-based patent map approach. Technovation, 29(6), 481-497.
24. Luhn, H. P. (1957). A statistical approach to mechanized encoding and searching of literary information. IBM Journal of research and development, 1(4), 309-317.
25. MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, 1(14), 281-297.
26. Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K., Studer, M., and Roudier, P., 2015, Package ‘cluster’.
27. Markillie, P. (2012). A Third Industrial Revolution: Special Report Manufacturing and Innovation. Economist Newspaper.
28. Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., & Euler, T. (2006). Yale: Rapid prototyping for complex data mining tasks. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 935-940). ACM.
29. Narin, F., Noma, E., & Perry, R. (1987). Patents as indicators of corporate technological strength. Research policy, 16(2-4), 143-155.
30. Ozbolat, I. T., & Yu, Y. (2013). Bioprinting toward organ fabrication: challenges and future trends. Biomedical Engineering, IEEE Transactions on, 60(3), 691-699.
31. Poelmans, J., Ignatov, D. I., Kuznetsov, S. O., & Dedene, G. (2013). Formal concept analysis in knowledge processing: A survey on applications. Expert systems with applications, 40(16), 6538-6560.
32. Rengier, F., Mehndiratta, A., von Tengg-Kobligk, H., Zechmann, C. M., Unterhinninghofen, R., Kauczor, H. U., & Giesel, F. L. (2010). 3D printing based on imaging data: review of medical applications. International journal of computer assisted radiology and surgery, 5(4), 335-341.
33. Rokach, L., & Maimon, O. (2005). Clustering methods. In Data mining and knowledge discovery handbook (pp. 321-352). Springer, US.
34. Salton, G., Wong, A., & Yang, C. S. (1975). A vector space model for automatic indexing. Communications of the ACM, 18(11), 613-620.
35. Sanchez, D., Martin-Bautista, M. J., Blanco, I., & Torre, C. (2008, December). Text knowledge mining: an alternative to text data mining. In Data Mining Workshops, 2008. ICDMW'08. IEEE International Conference on (pp. 664-672). IEEE.
36. Schubert, C., van Langeveld, M. C., & Donoso, L. A. (2013). Innovations in 3D printing: a 3D overview from optics to organs. British Journal of Ophthalmology, bjophthalmol-2013.
37. Sparck Jones, K. (1972). A statistical interpretation of term specificity and its application in retrieval. Journal of documentation, 28(1), 11-21.
38. Sullivan, D. (2001). Document warehousing and text mining: techniques for improving business operations, marketing, and sales. John Wiley & Sons, Inc., Hoboken, NJ, USA.
39. Taddy, M., Suggests, M. A. S. S., and Taddy, M. M., 2015, Package ‘textir’.
40. Tan, A. H. (1999). Text mining: The state of the art and the challenges. In Proceedings of the PAKDD Workshop on Knowledge Discovery from Advanced Databases, 8, 65-70.
41. Te Liew, W., Adhitya, A., & Srinivasan, R. (2014). Sustainability trends in the process industries: A text mining-based analysis. Computers in Industry, 65(3), 393-400.
42. Transparency Market Research, 2013, 3D Printing in Medical Applications Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2013–2019. Retrieved from Research and Market Website:
http://www.researchandmarkets.com/reports/2642328/3d_printing_in_medical_applications_market#pos-0
43. Trappey, A. J., Trappey, C. V., Chiang, T. A., & Huang, Y. H. (2013). Ontology-based neural network for patent knowledge management in design collaboration. International Journal of Production Research, 51(7), 1992-2005.
44. Trappey, C. V., Wu, H. Y., Taghaboni-Dutta, F., & Trappey, A. J. (2011). Using patent data for technology forecasting: China RFID patent analysis. Advanced Engineering Informatics, 25(1), 53-64.
45. Tseng, Y. H., Lin, C. J., & Lin, Y. I. (2007). Text mining techniques for patent analysis. Information Processing & Management, 43(5), 1216-1247.
46. Velmurugan, T., & Santhanam, T. (2010). Computational complexity between K-means and K-medoids clustering algorithms for normal and uniform distributions of data points. Journal of Computer Science, 6(3), 363.
47. Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236-244.
48. Wild, F., 2015, Package ‘lsa’.
49. Wille, R. (1982). Restructuring lattice theory: an approach based on hierarchies of concepts. (pp. 445-470). Springer Netherlands.
50. Wong, K. V., & Hernandez, A. (2012). A review of additive manufacturing. ISRN Mechanical Engineering, 2012.
51. Zhong, N., Li, Y., & Wu, S. T. (2012). Effective pattern discovery for text mining. IEEE Transactions on Knowledge and Data Engineering, 24(1), 30-44.
52. Zhou, X., Zhang, Y., Porter, A. L., Guo, Y., & Zhu, D. (2014). A patent analysis method to trace technology evolutionary pathways. Scientometrics, 100(3), 705-721.
(此全文限內部瀏覽)
電子全文
摘要檔
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *