|
1. Banks, J. (2012). Adding value in additive manufacturing: researchers in the United Kingdom and Europe look to 3D printing for customization. IEEE pulse, 4(6), 22-26. 2. Bermudez-Edo, M., Hurtado, M. V., Noguera, M., & Hurtado-Torres, N. (2015). Managing technological knowledge of patents: HCOntology, a semantic approach. Computers in Industry 72, 1-13. 3. Birkhoff, G., (1973). Lattice Theory, American Math. Society College Publishers, Providence. 4. Birtchnell, T., Böhme, T., & Gorkin, R. (2016). 3D printing and the third mission: The university in the materialization of intellectual capital. Technological Forecasting and Social Change. 5. Brock, G., Pihur, V., Datta, S., & Datta, S. (2008). clValid, an R package for cluster validation. Journal of Statistical Software 25(4), 1-22. 6. Daim, T. U., Rueda, G., Martin, H., & Gerdsri, P. (2006). Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological Forecasting and Social Change, 73(8), 981-1012. 7. De Maio, C., Fenza, G., Loia, V., & Senatore, S. (2012). Hierarchical web resources retrieval by exploiting fuzzy formal concept analysis. Information Processing & Management, 48(3), 399-418. 8. Fattori, M., Pedrazzi, G., & Turra, R. (2003). Text mining applied to patent mapping: a practical business case. World Patent Information, 25(4), 335-342. 9. Feinerer, I. (2015). Introduction to the tm Package Text Mining in R. 2013-12-01]. http://www, dainf, ct. utfpr, edu. br/-kaestner/Min-eracao/RDataMining/tm, pdf. 10. Gibson, I., Rosen, D. W., & Stucker, B. (2010). Additive manufacturing technologies (pp. 1-3). New York: Springer. 11. Gross, B. C., Erkal, J. L., Lockwood, S. Y., Chen, C., & Spence, D. M. (2014). Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Analytical chemistry, 86(7), 3240-3253. 12. Hornik, K., 2015, Package ‘NLP’. 13. Hoy, M. B. (2013). 3D printing: making things at the library. Medical reference services quarterly, 32(1), 93-99. 14. Ihaka, R., & Gentleman, R. (1996). R: a language for data analysis and graphics. Journal of computational and graphical statistics, 5(3), 299-314. 15. Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM computing surveys (CSUR), 31(3), 264-323. 16. Jun, S. (2011). IPC Code Analysis of Patent Documents Using Association Rules and Maps–Patent Analysis of Database Technology. In Database Theory and Application, Bio-Science and Bio-Technology (pp. 21-30). Springer Berlin Heidelberg. 17. Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., & Wu, A. Y. (2002). An efficient k-means clustering algorithm: Analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 881-892. 18. Kaufman, L., & Rousseeuw, P. J. (1990). Partitioning around medoids (program PAM). Finding groups in data: an introduction to cluster analysis, 68-125. John Wiley & Sons, Inc., Hoboken, NJ, USA. 19. Kim, Y. G., Suh, J. H., & Park, S. C. (2008). Visualization of patent analysis for emerging technology. Expert Systems with Applications, 34(3), 1804-1812. 20. Klein, G. T., Lu, Y., & Wang, M. Y. (2013). 3D printing and neurosurgery—ready for prime time?. World neurosurgery, 80(3), 233-235. 21. Lee, C., Jeon, J., & Park, Y. (2011). Monitoring trends of technological changes based on the dynamic patent lattice: A modified formal concept analysis approach. Technological Forecasting and Social Change, 78(4), 690-702. 22. Lee, L. C., 2015, “Using patent evolution to analyze the development trends of 3D printing application on biomedical,” Master’s thesis, Department Industrial Engineering and Engineering Management, National Tsing Hua University. 23. Lee, S., Yoon, B., & Park, Y. (2009). An approach to discovering new technology opportunities: Keyword-based patent map approach. Technovation, 29(6), 481-497. 24. Luhn, H. P. (1957). A statistical approach to mechanized encoding and searching of literary information. IBM Journal of research and development, 1(4), 309-317. 25. MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, 1(14), 281-297. 26. Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K., Studer, M., and Roudier, P., 2015, Package ‘cluster’. 27. Markillie, P. (2012). A Third Industrial Revolution: Special Report Manufacturing and Innovation. Economist Newspaper. 28. Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., & Euler, T. (2006). Yale: Rapid prototyping for complex data mining tasks. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 935-940). ACM. 29. Narin, F., Noma, E., & Perry, R. (1987). Patents as indicators of corporate technological strength. Research policy, 16(2-4), 143-155. 30. Ozbolat, I. T., & Yu, Y. (2013). Bioprinting toward organ fabrication: challenges and future trends. Biomedical Engineering, IEEE Transactions on, 60(3), 691-699. 31. Poelmans, J., Ignatov, D. I., Kuznetsov, S. O., & Dedene, G. (2013). Formal concept analysis in knowledge processing: A survey on applications. Expert systems with applications, 40(16), 6538-6560. 32. Rengier, F., Mehndiratta, A., von Tengg-Kobligk, H., Zechmann, C. M., Unterhinninghofen, R., Kauczor, H. U., & Giesel, F. L. (2010). 3D printing based on imaging data: review of medical applications. International journal of computer assisted radiology and surgery, 5(4), 335-341. 33. Rokach, L., & Maimon, O. (2005). Clustering methods. In Data mining and knowledge discovery handbook (pp. 321-352). Springer, US. 34. Salton, G., Wong, A., & Yang, C. S. (1975). A vector space model for automatic indexing. Communications of the ACM, 18(11), 613-620. 35. Sanchez, D., Martin-Bautista, M. J., Blanco, I., & Torre, C. (2008, December). Text knowledge mining: an alternative to text data mining. In Data Mining Workshops, 2008. ICDMW'08. IEEE International Conference on (pp. 664-672). IEEE. 36. Schubert, C., van Langeveld, M. C., & Donoso, L. A. (2013). Innovations in 3D printing: a 3D overview from optics to organs. British Journal of Ophthalmology, bjophthalmol-2013. 37. Sparck Jones, K. (1972). A statistical interpretation of term specificity and its application in retrieval. Journal of documentation, 28(1), 11-21. 38. Sullivan, D. (2001). Document warehousing and text mining: techniques for improving business operations, marketing, and sales. John Wiley & Sons, Inc., Hoboken, NJ, USA. 39. Taddy, M., Suggests, M. A. S. S., and Taddy, M. M., 2015, Package ‘textir’. 40. Tan, A. H. (1999). Text mining: The state of the art and the challenges. In Proceedings of the PAKDD Workshop on Knowledge Discovery from Advanced Databases, 8, 65-70. 41. Te Liew, W., Adhitya, A., & Srinivasan, R. (2014). Sustainability trends in the process industries: A text mining-based analysis. Computers in Industry, 65(3), 393-400. 42. Transparency Market Research, 2013, 3D Printing in Medical Applications Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2013–2019. Retrieved from Research and Market Website: http://www.researchandmarkets.com/reports/2642328/3d_printing_in_medical_applications_market#pos-0 43. Trappey, A. J., Trappey, C. V., Chiang, T. A., & Huang, Y. H. (2013). Ontology-based neural network for patent knowledge management in design collaboration. International Journal of Production Research, 51(7), 1992-2005. 44. Trappey, C. V., Wu, H. Y., Taghaboni-Dutta, F., & Trappey, A. J. (2011). Using patent data for technology forecasting: China RFID patent analysis. Advanced Engineering Informatics, 25(1), 53-64. 45. Tseng, Y. H., Lin, C. J., & Lin, Y. I. (2007). Text mining techniques for patent analysis. Information Processing & Management, 43(5), 1216-1247. 46. Velmurugan, T., & Santhanam, T. (2010). Computational complexity between K-means and K-medoids clustering algorithms for normal and uniform distributions of data points. Journal of Computer Science, 6(3), 363. 47. Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236-244. 48. Wild, F., 2015, Package ‘lsa’. 49. Wille, R. (1982). Restructuring lattice theory: an approach based on hierarchies of concepts. (pp. 445-470). Springer Netherlands. 50. Wong, K. V., & Hernandez, A. (2012). A review of additive manufacturing. ISRN Mechanical Engineering, 2012. 51. Zhong, N., Li, Y., & Wu, S. T. (2012). Effective pattern discovery for text mining. IEEE Transactions on Knowledge and Data Engineering, 24(1), 30-44. 52. Zhou, X., Zhang, Y., Porter, A. L., Guo, Y., & Zhu, D. (2014). A patent analysis method to trace technology evolutionary pathways. Scientometrics, 100(3), 705-721.
|