帳號:guest(18.223.170.190)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張裕昇
作者(外文):Chang, Yu Sheng
論文名稱(中文):結合解析與模擬於機場航班轉盤卸載道指派問題
論文名稱(外文):Combining Analytical and Simulation Approaches to Carousel-based Unloading Zone Assignment in Airport Baggage Handling System
指導教授(中文):林則孟
指導教授(外文):Lin, Tse Meng
口試委員(中文):洪一峯
陳子立
口試委員(外文):Hung, Yi Feng
Chen, Tzu Li
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:103034542
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:100
中文關鍵詞:機場行李運輸系統航班轉盤卸載道指派問題模擬與解析混合模式
外文關鍵詞:Airport Baggage Handling SystemFlight unloading zone assignmentHybrid simulation-analytical approach
相關次數:
  • 推薦推薦:0
  • 點閱點閱:272
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,桃園國際機場第二航廈的航班量及行李量逐年增加,因此行李運輸系統(BHS)的卸載道型態由直線型改建為轉盤型(carousel),藉此在同一時段下單一卸載道因轉盤卸載道容量大而可以同時處理多個航班,然而也因卸載道數量的減少,因此航班必須要重新安排。然而如果航班安排不佳而導致轉盤卸載道需同時處理多個航班,轉盤卸載道將可能發生故障之情況,且人工分揀作業複雜度及分揀錯誤率也將隨之提升,因此可能無法將行李準時且正確地送上飛機。有鑑於此,若能以一個較好之方式將航班安排至轉盤卸載道,則能有效降低人工分揀錯誤的可能性,而轉盤卸載道也能正常地運作。
為了將一天中所有航班以適當的方式安排至卸載道,本研究將在考量行李運輸時間之影響下,以最小化卸載重疊時間為目標將所有航班安排至卸載道。然而為了將模擬模式對於行李運輸時間之影響加入考量以求得較適當之航班轉盤卸載道指派位置,故本研究將以模擬與解析混合模式同時擷取兩模式之優點以較快之速率求得到品質良好的較佳解。為了更加貼近實務情況,本研究亦將蒐集多筆歷史資料以進行航班及行李資訊之配適,產生多組航班及行李投入以使得所求之結果能夠更加客觀。
然而,除了卸載重疊時間之外,人工分揀行李量亦可反映人工分揀錯誤之可能性,又由ANOVA分析結果得知卸載道開啟時間設定為影響人工分揀行李量之要因,為對於整體的行李運輸系統有較完善的考量以更降低人工分揀錯誤率,因此本研究將綜合考量兩績效指標下同時找出航班轉盤卸載道指派位置及卸載道開啟時間參數設定。
本研究透過模擬與解析混合模式進行實驗與分析,由實驗結果發現本研究議題進行一次迭代即可得到品質相當良好的解方案,相較於現行實務安排平均可降低約77%之卸載重疊時間,另外,由實驗結果亦發現不同卸載區域及時段有分別適合的航班卸載道指派方式,因此本研究可將航班卸載道指派方式建議及求解所得之航班卸載道指派結果提供給BHS管理者與機場決策者,以便於做決策時能夠有循序漸進及階段性之參考依據。
In recent years, the number of flights and baggage in Taiwan Taoyuan International Airport (TPE) increase year after year. In consequence, the type of unloading area in baggage handling system is changed from unloading belt lateral to carousel. Carousel has bigger capacity so that ground service can carry the baggage for more than two flights simultaneously. Nonetheless, owing to the decrease in unloading area, the flights need to be rearranged. If the flight is not arranged well, more than one flight may be arranged to the same carousel at the same time. As a result, the carousel may malfunction because of too much baggage. Besides, it will make the ground service hard to differentiate the baggage of different flights so that the possibility of mishandling of baggage may increase.
In order to arrange all flights to carousel in an appropriate way, in this paper, under consideration to the impact of traveling time, we use “min overlap time” as the objective of unloading zone assignment problem. For the sake of taking the influence of simulation model on traveling time into consideration, we propose to use a hybrid simulation-analytical approach to benefit from two models in order to get ideal and optimal solution in less computational effort. Besides, we collect a lot of historical data and use data fitting to generate different input data to avoid subjective experimental result.
In addition to overlap time, baggage with manual operation can also reflect the possibility of mishandling of baggage. And we know that the setting of carousel-opening time is the main influencing factor of baggage with manual operation. In the cause of improving the overall considerations so as to decrease possibility of mishandling of baggage, we can find better parameter setting of carousel-opening time and unloading zone assignment solution under comprehensive consideration of these two performances.
In this paper, we conduct experiments and perform analysis by hybrid simulation-analytical approach. The experimental results show that it performs well by one iteration. It can reduce 77 percent of overlap time on average compared to practical arrangements. Besides, the experimental results also show that different unloading zones and time intervals have their own suitable methods of arrangement. As a result, we can provide experimental results and suggestion to airport managers and BHS managers. And managers can take as a reference step by step when making decision.
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 7
1.3 研究範圍與限制 8
1.4 研究步驟 9
第二章 文獻回顧 11
2.1 機場行李運輸系統 11
2.2 機場航班轉盤卸載道指派 14
2.3 模擬與解析混合模式 20
2.4 小結 27
第三章 航班轉盤卸載道指派問題分析 29
3.2 航班行李資訊分析 32
3.2.1 各航班行李量分析 32
3.2.2 各航班行李來到時間分析 34
3.2.3 小結 36
3.3 研究方法 37
3.3.1 研究方法架構 38
3.3.2 數學規劃模型建構 42
3.3.3 模擬模式建構 45
3.4 求解方式之驗證 49
3.5 實驗與分析 52
3.5.1 以模擬與解析混合模式進行航班轉盤卸載道指派問題求解 52
3.5.2 最小化卸載重疊時間、依航班起飛時間及現行實務機場安排等三方式之效益比較 64
第四章 同時考量航班轉盤卸載道指派及控制因子參數設定之問題分析 68
4.1 行李運輸系統內部控制因子與績效分析 69
4.2 卸載道開啟時間設定之方案分析77
4.3 小結 81
第五章 結論與建議 83
5.1 結論 83
5.2 建議 85
1. 中華民國交通部觀光局網(http://admin.taiwan.net.tw/statistics/year.aspx?no=134)。
2. 林則孟(2001)。系統模擬-理論與應用。滄海書局。
3. 產學研究專案計畫。機場航廈行李運輸系統控制之規劃問題。
4. 施昺羲(2015)。機場行李運輸系統航班轉盤卸載道指派問題。國立清華大學工業工程與工程管理研究所碩士論文,新竹市。
5. 劉堰丞(2014)。機場行李搬運系統模擬研究。國立清華大學工業工程與工程管理研究所,新竹市。
6. 鍾唯兌(2015)。機場行李搬運系統管控因子模擬分析。國立清華大學工業工程與工程管理研究所,新竹市。
7. Abdelghany, A., Abdelghany, K., & Narasimhan, R. (2006). Scheduling baggage-handling facilities in congested airports. Journal of Air Transport Management, 12, 76-81.
8. Al-Serafi, A., & Elragal, A. (2014). Visual trajectory pattern mining: an exploratory study in baggage handling systems. Advances in Data Mining, 8557, 159-173.
9. Ascó, A., Atkin, J. A. D., & Burke, E. K. (2013). An analysis of constructive algorithms for the airport baggage sorting station assignment problem. Journal of Scheduling, 17(6), 601-619.
10. Barth, T. C. (2013). Optimal assignment of incoming flights to baggage carousels at airports. Department of Management Engineering, Technical University of Denmark.
11. Barth, T. C., Timler Holm, J., & Lindorff Larsen, J. (2013). A model for transfer baggage handling at airports. Department of Management Engineering, Technical University of Denmark.
12. Briggs, D. D., Mollaghasemi, M., & Sepúlveda, J. A. (1995). A hybrid analytical/simulation modeling approach for planning mass tactical airborne operations. Proceedings of the 1995 Winter Simulation Conference, 1257-1261.
13. Byrne, M. D., & Bakir, M. A. (1999). Production planning using a hybrid simulation - analytical approach. International journal of Production Economics, 59, 305-311.
14. Dengiz, B., İç., Y. T., & Belgin, O. (2016). A meta-model based simulation optimization using hybrid simulation-analytical modeling to increase the productivity in automotive industry. Mathematics and Computers in Simulation, 120(C), 120-128.
15. Hsieh, S. J. (2002). Hybrid analytic and simulation models for assembly line design and production planning. Simulation Modelling Practice and Theory, 10, 87–108.
16. Ignall, E. J., Kolesar P., & Walker, W. E. (1978). Using simulation to develop and validate analytic models: some case studies. Operations Research, 26(2), 237-253.
17. Jing, G. G., Kelton, W. D., Arantes, J. C., & Houshmand, A. A. (1998). Modeling a controlled conveyor network with merging configuration. Proceedings of the 1998 Winter Simulation Conference, 1041-1048.
18. Johnstone, M., Creighton, D ., & Nahavandi, S. (2015). Simulation-based baggage handling system merge analysis. Simulation Modelling Practice and Theory, 53, 45-59.
19. Joustra, P. E., & Van Dijk, N. M. (2001). Simulation of check-in at airports. IEEE International Conference on Simulation, 2, 1023-1028.
20. Lee, Y. H., Kim, S. H., & Moon, C. (2002). Production-distribution planning in supply chain using a hybrid approach. Production Planning & Control, 13(1), 35-46.
21. Ma, N. L., Choy, M., & Cheong, M. (2012). Uncovering interesting business insights through the use of data analytics in Airport operation: an empirical study 2012 Service Research and Innovation Institute Global Conference, 803-810.
22. Madu, C. N. (1990). Simulation in manufacturing : a regression metamodel approach. Computers & Industrial Engineering, 18(3), 381-389.
23. Mahadevan, B., & Narendran, T. T. (1994). A hybrid modelling approach to the design of an AGV-based material handling system for an FMS.  International Journal of Production Research, 32(9), 2015-2030.
24. Petuhova, J., & Merkuryev, Y. (2007). Combining analytical and simulation approaches to quantification of the bullwhip effect. International Journal of Simulation, 8(1), 16-24.
25. Shanthikumar, J. G., & Sargent, R. G. (1978). A unifying view of hybrid simulation/analytic models and modeling. Operations Research, 31(6), 1030-1052.
26. Van Dijk, N. M. & Van Der Sluis, E. (2006). Check-in computation and optimization by simulation and IP in combination. European Journal of Operational Research, 171(3), 1152-1168.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *