帳號:guest(3.139.233.73)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):莊雅涵
作者(外文):Chuang, Ya Han
論文名稱(中文):建構以田口能力指標之快速轉換抽樣系統
論文名稱(外文):Developing a Quick Switching Sampling System Based on Taguchi Capability Index
指導教授(中文):吳建瑋
指導教授(外文):Wu, Chien Wei
口試委員(中文):蘇明鴻
廖茂原
張國浩
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:103034534
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:65
中文關鍵詞:驗收抽樣快速轉換抽樣系統損失函數田口能力指標
外文關鍵詞:Acceptance samplingQuick switching sampling systemLoss functionTaguchi capability index
相關次數:
  • 推薦推薦:0
  • 點閱點閱:134
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
  在現今競爭激烈的社會中,消費者對於產品的要求越來越高,從以往的價格導向轉為品質導向。驗收抽樣計畫為一項實用的品質工具,其可以透過抽樣檢驗方式決定貨批是否允收。而快速轉換抽樣系統(Quick Switching Sampling system, QSS system)包含兩種單次驗收抽樣計畫,分別在正常檢驗及加嚴檢驗下執行,其可根據過去送驗貨批品質好壞在兩種檢驗下快速轉換,有效減少抽樣成本。
  為了要提供數值來量化製程績效,各式製程能力指標(Process Capability Indices, PCIs)被廣泛的使用。其中基於田口博士提出之損失函數發展出來的田口能力指標(Taguchi capability index)可同時考量製程目標及製程變異。
  本研究目的為發展基於田口能力指標之快速轉換抽樣系統,並彙整出其三種型態。為了求解出系統參數,本研究建構出最佳化模型,利用非線性規劃求解,並整理出三種型態下之系統參數值。再透過操作特性曲線(Operating Characteristic curve, OC curve)與平均抽樣樣本數(Average Sample Number, ASN)探討系統之績效,並與單次驗收抽樣計畫比較。最後以實例分析進而呈現本研究提出之系統,供未來使用者作參考。
  Acceptance sampling plan is a practical quality tool which evaluates only parts of products and then decides whether to accept or not on the submitted lot. Quick switching sampling (QSS) system is combined with two variables single sampling plans under normal inspection and tightened inspection.
  In order to provide numerical measures on process performance, several process capability indices (PCIs) have been applied. Taguchi capability index is developed by incorporating the Taguchi loss function, and takes the process targeting and process variability into consideration simultaneously.
  This research develops a variables QSS system of three types based on Taguchi capability index. To determine the parameters of three types of system, the problems are formulated as optimization programming. The objective function is to minimize the average sample number (ASN), and the constraints functions are set to fulfill two-point conditions on the operating characteristic (OC) curve. The performance of proposed system is discussed and compared with single sampling plan. Lastly, an application example is illustrated.
摘要 I
Abstract II
致謝 III
圖目錄 VII
表目錄 VIII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究架構 3
第二章 文獻探討 5
2.1 驗收抽樣計畫 5
2.1.1 驗收抽樣計畫分類 6
2.1.2 驗收抽樣計畫發展 8
2.1.3 驗收抽樣計畫績效衡量 9
2.2 製程能力指標 12
2.2.1 製程能力指標發展簡介 13
2.2.2 製程能力指標 之估計式 16
2.2.3 製程能力指標 之抽樣分配 16
2.2.4 製程能力指標 之假設檢定 17
第三章 建構以田口能力指標之快速轉換抽樣系統 19
3.1 快速轉換抽樣系統之概念及操作程序 19
3.2 快速轉換抽樣系統之允收機率函數 22
3.3 快速轉換抽樣系統參數之數學模型 24
3.3.1 型態一系統參數之數學模型 26
3.3.2 型態二系統參數之數學模型 27
3.3.3 型態三系統參數之數學模型 28
3.4 快速轉換抽樣系統之求解結果分析 29
3.4.1 型態一系統求解結果分析 29
3.4.2 型態二系統求解結果分析 35
3.4.3 型態三系統求解結果分析 37
第四章 分析與討論 39
4.1 操作特性曲線 39
4.1.1 型態一系統之操作特性曲線 40
4.1.2 型態二系統之操作特性曲線 42
4.1.3 型態三系統之操作特性曲線 42
4.2 平均抽樣樣本數 43
4.2.1 平均抽樣樣本數之不同目標式比較 43
4.2.2 三型態系統平均抽樣樣本數比較 45
4.2.3 三型態系統與其他抽樣計畫平均抽樣樣本數比較 46
第五章 案例分析 53
第六章 結論與未來展望 58
6.1 結論 58
6.2 未來展望 60
參考文獻 61
一、中文文獻
1. 陳彥文 (2014),「基於製程能力指標 之新式計量型連鎖驗收抽樣計畫」,碩士論文,國立清華大學工業工程與工程管理學系。
2. 施美旭 (2015),「基於製程績效指標之計量型快速轉換抽樣系統」,碩士論文,國立清華大學工業工程與工程管理學系。
二、英文文獻
1. Aslam, M., Azam, M. and Jun. C.H. (2013). Multiple dependent state sampling plan based on process capability index. Journal of Testing and Evaluation, 41(2), 1-7.
2. Balamurali, S. and Jun, C.H. (2007). Multiple dependent state sampling plans for lot acceptance based on measurement data. European Journal of Operational Research, 180(3), 1221-1230.
3. Balamurali, S. and Usha, M. (2011). Optimal designing of a variables quick switching system by minimzing the average sample number. Journal of Applied Statistics, 19(3), 295-310.
4. Balamurali, S. and Usha, M. (2012). Variables quick switching system with double specification limits. International Journal of Reliability, Quality and Safety Engineering, 19(2), 1250008-1250024.
5. Boyles, R.A. (1991). The Taguchi capability index. Journal of Quality Technology, 23(1), 17-26.
6. Chan, L.K., Cheng, S.W. and Spiring, F.A. (1988). A new measure of process capability. Journal of Quality Technology, 20(3), 162-175.
7. Cheng, S.W. (1994). Practical implementation of the process capability indices. Quality Engineering, 7(2), 239-259.
8. Dodge, H.F. (1967). A new dual system of acceptance sampling. Technical Report, No. 16.
9. Dodge, H.F. and Romig, H. (1929). A method of sampling inspection. Bell System Technical Journal, 8(4), 613-631.
10. Govindaraju, K. and Kuralmani, V. (1992). Modified tables for the selection of QSS–1 quick switching system for a given (AQL, LQL). Communications in Statistics-Simulation and Computation, 21(4), 1103-1123.
11. Govindaraju, K. and Subramani, K. (1990). Selection of single sampling attributes plan for given acceptance quality level involving minimum risks. Communication in Statistics- Simulation and Computation, 19, 1293 - 1302.
12. Hamaker, H. (1950). The theory of sampling inspection plans: publisher not identified.
13. Kane, V.E. (1986). Process capability indices. Journal of Quality Technology, 18(1), 41-52.
14. Lin, P.C. and Pearn, W.L. (2005). Testing manufacturing performance based on capability index . The International Journal of Advanced Manufacturing Technology, 27(3-4), 351-358.
15. Liu, S.W. and Wu, C.W. (2016). A quick switching sampling system by variables for controlling lot fraction nonconforming. International Journal of Production Research, 54(6), 1839-1849.
16. Montgomery, D. C. (2012). Statistical quality control: a modern introduction (6th Edition), Wiley, New York.
17. Pearn, W.L. and Shu, M.H. (2003). Lower confidence bounds with sample size information of applied to production yield assurance. International Journal of Production Research, 41(15), 3581–3599.
18. Pearn, W.L. and Wu, C.W. (2006). Variables sampling plans with PPM fraction of defectives and process loss consideration. Journal of the Operational Research Society, 57(4), 450-459.
19. Perakis M. and Xekalaki E. (2004). A new method for constructing confidence intervals for the index . Quality and Reliability Engineering International, 20(7), 651-665.
20. Romboski, L.D. (1969). An investigation of quick switching acceptance sampling systems. PhD Dissertation, Rutgers – The State University, New Brunswick, NJ.
21. Ruczinski, I. (1996). The relation between and the degree of includence. Doctoral Dissertation, University of Würzberg, Würzberg, Germany.
22. Seidel, W. (1997). Is sampling by variables worse than sampling by attributes? A decision theoretic analysis and a new mixed strategy for inspecting individual lots. Sankhyā: The Indian Journal of Statistics, Series B, 59(1), 96-107.
23. Shiau, J.H., Chiang, C.T. and Hung, H.N. (1999). A Bayesian procedure for process capability assessment. Quality and Reliability Engineering International, 15(5), 369-378.
24. Soundararajan, V. and Palanivel, M. (1997). Quick switching variables single sampling system index by AQL and LQL: Acceptance criterion tightening. Journal of Applied Statistical Science, 6(1), 45-57.
25. Wu, C.W. (2012). An efficient inspection scheme for variables based on Taguchi capability index. European Journal of Operational Research, 223(1), 116-122.
26. Wu, C.W., Chen, J.C. and Wu, T.H. (2015). A flexible sampling scheme for variables inspection with loss consideration. Journal of Statistical Computation and Simulation, 85(18), 3766-3777.
27. Zimmer, L.S., Hubele, N.F. and Zimmer, W.J. (2001). Confidence internals and sample size determination for . Quality and Reliability Engineering International, 17(1), 51-68.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *