|
[1] Bäck, Thomas (1996). Evolutionary Algorithms in Theory and Practice, Oxford University Press, New York. [2] Vapnik, V. (1995). The Nature of Statistical Learning Theory, New York. NY: Springer. [3] Fu, X., Ong, C., Keerthi, S., Hung, G. G., & Goh, L. (2004, July). Extracting the knowledge embedded in support vector machines. In Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on (Vol. 1). [4] Goldberg, D. E. (1989). Genetic algorithms in search optimization and machine learning (Vol. 412). Reading Menlo Park: Addison-wesley. [5] Peppers, D. and Rogers, M., Enterprise One to One: Tools for Competing in the Interactive Age, New York: Currency Doubleday, 1997. [6] Moshkovich, H. M., Mechitov, A. I. & Olson, D. L. (2002). Rule Induction in the Data Mining: Effect of Ordinal Scales. Expert System with Applications, 22(4), pp.303-311. [7] Ferreira, C., Gene Expression Programming: A New Adaptive Algorithm for Solving Problem, Complex System, Vol.13, 2001, pp.87-129. [8] Núñez, H., Angulo, C., & Català, A. (2002). Rule extraction from support vector machines. In ESANN, pp.107-112. [9] Barakat, N., & Diederich, J. (2005). Eclectic rule-extraction from support vector machines. International Journal of Computational Intelligence, 2(1), pp.59-62. [10] Stevens, P., Knutson, B., & Patton, M. (1995). DINESERV: A tool for measuring service quality in restauran. Cornell Hospitality Quarterly, 36(2), pp.56. [11] Zhou, C., Xiao, W., Tirpak, T. M., & Nelson, P. C. (2003). Evolving accurate and compact classification rules with gene expression programming. Evolutionary Computation, IEEE Transactions on, 7(6), pp.519-531. [12] Fu, X., Ong, C., Keerthi, S., Hung, G. G., & Goh, L. (2004, July). Extracting the knowledge embedded in support vector machines. In Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on (Vol. 1). [13] Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. U Michigan Press. [14] Dorsey, R. E., & Mayer, W. J. (1995). Genetic algorithms for estimation problems with multiple optima, nondifferentiability, and other irregular features.Journal of Business & Economic Statistics, 13(1), pp.53-66. [15] Pawlak, Z. (1982). Rough sets. International Journal of Computer & Information Sciences, 11(5), pp.341-356. [16] Kotler, P. (2001). Marketing Management: Analysis, Planning, Implementation, and Control, 11th ed., New Jersey: Prentice Hall, Inc. [17] Datta, S., & Das, S. (2015). Near-Bayesian Support Vector Machines for imbalanced data classification with equal or unequal misclassification costs.Neural Networks, 70, pp.39-52. [18] López, V., del Río, S., Benítez, J. M., & Herrera, F. (2015). Cost-sensitive linguistic fuzzy rule based classification systems under the MapReduce framework for imbalanced big data. Fuzzy Sets and Systems, 258, pp.5-38. [19] Šter, B., & Dobnikar, A. (1996). Neural networks in medical diagnosis: Comparison with other methods. In International Conference on Engineering Applications of Neural Networks, pp.427-30. [20] Chien, C. F., & Chen, L. F. (2008). Data mining to improve personnel selection and enhance human capital: A case study in high-technology industry. Expert Systems with applications, 34(1), pp.280-290. [21] Jensen, H. L. (1992). Using neural networks for credit scoring. Managerial finance, 18(6), pp.15-26. [22] Schafer, J. B., Konstan, J. A., & Riedl, J. (2001). E-commerce recommendation applications. In Applications of Data Mining to Electronic Commerce, Springer US, pp.115-153. [23] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), pp.273-297. [24] Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory, ACM, pp.144-152. [25] Su, C. T., & Yang, C. H. (2008). Feature selection for the SVM: An application to hypertension diagnosis. Expert Systems with Applications, 34(1), pp.754-763. [26] Chen, L. F. (2012). A novel approach to regression analysis for the classification of quality attributes in the Kano’s model: an empirical test in the food and beverage industry. Omega-International Journal of Management Science, 40(5), pp.651-659. [27] Chen, L. F. (2014). A novel framework for customer-driven service strategies: a case study of a restaurant chain. Tourism Management, 41, pp.119-128 [28] Chen, L. F. (2015). Exploring asymmetric effects of attribute performance on customer satisfaction using association rule method. International Journal of Hospitality Management, 47, pp.54-64 [29] 陳衍成 (2012),支持向量器的分類和規則萃取:理論與運用,國立清華大學工業工程與工程管理系博士論文。 [30] 劉昱江 (2000),基因演算法在重複性工程時間成本分析之應用,朝陽科技大學營建工程研究所碩士論文。 [31] 蘇朝墩 (2002),品質工程,中華民國品質學會。 [32] 陳俗玄 (2012),運用基因演算法發展差異性極大化之集成式分類器,國立清華大學工業工程與工程管理系碩士論文。 [33] 翁慈宗 (2009),資料探勘的發展與挑戰,科學發展期刊,442期,34-37頁。 [34] 翁振益、張德儀、鄭光遠 (2006),資料探勘技術應用於航空業顧客再撘意願區隔與服務滿意項目組合之分析,觀光研究學報,第12卷第2期,142頁。 [35] 鐘依芸 (2004),行動電話系統業服務品質滿意度之研究-應用統計分析與決策樹,元智大學工業工程與管理學系碩士論文。 [36] 李永山、謝逸凡 (2007),網際網路服務業客戶流失預測模式之研究,Electronic Commerce Studies,第1卷第4期,485-502頁。 [37] 吳明輝 (2010),應用基因表示規劃法於顧客流失預測模型之研究-以某電信公司為例,天主教輔仁大學資訊管理學系在職專班碩士論文。 [38] 胡維萍、陳雅玲 (2010),以約略集理論輔助網路商店提昇電子交易品質之探討,資訊管理展望,第12卷第2期,201-219頁。 [39] 郭承林 (2012),應用資料探勘技術建立顧客流失預測模型-以行動通訊產業為例,高雄應用科技大學企業管理研究所碩士論文。 [40] 高靖翔 (2008),多項分配之分類方法比較與實證研究,政治大學統計研究所碩士論文。 [41] 孫華麗、謝劍英、薛耀鋒 (2006),基於支持向量機的物流服務顧客滿意度評價模型,上海交通大學學報,第40卷第4期,684-688頁。 [42] 尹其言、楊建民 (2010),應用文件分群與文字探勘技術於機器學習領域趨勢分析以SSCI資料庫為例,長榮大學學報,第14卷第2期,1-16頁。 [43] 蔡詩怡 (2011),以探索性資料分析方法發展心臟血管疾病臨床輔助預知模型,國立臺北護理健康大學資訊管理研究所碩士論文。 |