帳號:guest(3.142.166.206)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):華琦
作者(外文):Hua, Qi
論文名稱(中文):Capacity Planning for Packaging Industry Using Multi-Objective Genetic Algorithm
論文名稱(外文):應用多目標基因演算法於包裝業產能規劃之研究
指導教授(中文):陳建良
指導教授(外文):James C. Chen
口試委員(中文):陳子立
陳盈彥
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:103034468
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:60
中文關鍵詞:包裝業產能規劃系統多目標基因演算法
外文關鍵詞:packaging industrycapacity planning systemmulti-objective genetic algorithm
相關次數:
  • 推薦推薦:0
  • 點閱點閱:201
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
包裝業是快速發展的勞力密集型產業,在全球一體化的趨勢下,產業內企業間競爭日益劇烈。本研究利用Visual Basic for Application (VBA)建構一產能規劃系統於包裝業工廠,不僅能對訂單自動排程以滿足訂單交期,而且能平衡同一製程內各機台的負荷。
此外,利用多目標基因演算法優化包裝業產能規劃系統中訂單排序,同時考量兩目標:(1) 最小化訂單延誤、(2) 最小化機台負荷平衡差異。本研究採用實驗設計方法評估不同參數組合之績效,並利用變異數分析評估成果。本研究可提供包裝業訂單排程之參考,有效降低訂單延誤,平衡機台負荷。
Packaging industry is a rapid developing labor-intensive industry. Facing the global trend of integration, intra-industry enterprises compete with each other fiercely. This study develops a capacity planning system (CPS) for packaging plant by using Visual Basic for Application (VBA). It can not only automatically generate order scheduling to meet the delivery of orders, but also balance the workload between machines in the same process.
Besides, this study proposes a modified multi-objective genetic algorithm (MOGA) to solve multi-objective order scheduling problem. Two criteria are simultaneously considered for optimization: to minimize the lateness, and to minimize machine workload balance deviation. Design of experiments (DOE) is adopted to validate the performance and analysis of variance (ANOVA) to evaluate the output. This study can provide some reference to packaging plants to make better order scheduling decisions, efficiently reducing lateness and balancing machine workload.
Chapter 1: Introduction 1
1.1 Background and Motivation 1
1.2 Research Objectives 3
1.3 Research Method 4
1.4 Organization of Thesis 5
Chapter 2: Literature Review 6
2.1 Production Scheduling 6
2.2 Capacity Planning System 8
2.3 Multi-Objective Genetic Algorithm 10
Chapter 3: Methodology 13
3.1 Problem Statement 13
3.2 Capacity Planning System 17
3.2.1 Order Treatment Module (OTM) 20
3.2.2 Order Priority Module (OPM) 20
3.2.3 Lot Release Module (LRM) 21
3.2.4 Workload Accumulation Module (WAM) 22
3.2.5 Workload Balance Module (WBM) 22
3.3 Multi-objective Genetic Algorithm Approach 24
3.3.1 Chromosome Encoding 25
3.3.2 Population Initialization 25
3.3.3 Fitness Function Evaluation 26
3.3.4 Selection 28
3.3.5 Crossover 29
3.3.6 Mutation 30
3.3.7 Next Population Generation 31
3.3.8 Termination 32
3.3.9 Example of Multi-Objective Genetic Algorithm Approach 32
Chapter 4: Experiments and Results 36
4.1 Simulation Environment 36
4.2 MOGA Parameters Setting 39
4.3 CPS Parameters Setting 44
Chapter 5: Conclusion 55
Reference 57
Bierwirth, C., & Mattfeld, D. C. (1999). Production scheduling and rescheduling with genetic algorithms. Evolutionary Computation, 7(1), 1-17.
Chen, J. C., & Chen, C. W. (2010). Capacity planning of serial and batch machines with capability constraints for wafer fabrication plants. International Journal of Production Research, 48(11), 3207-3223.
Chen, J. C., Chen, C. W., Lin, C. J., & Rau, H. (2005). Capacity planning with capability for multiple semiconductor manufacturing fabs. Computers & Industrial Engineering, 48(4), 709-732.
Chen, J. C., Chen, T. L., Pratama, B. R., & Tu, Q. F. (2016a). Capacity planning in thin film transistor–liquid crystal display cell process. Journal of Manufacturing Systems, 39, 63-78.
Chen, J. C., Chen, T. L., Pratama, B. R., & Tu, Q. F. (2016b). Capacity planning with ant colony optimization for TFT-LCD array manufacturing. Journal of Intelligent Manufacturing, 1-19.
Chen, J. C., Fan, Y. C., & Chen, C. W. (2009). Capacity requirements planning for twin fabs of wafer fabrication. International Journal of Production Research, 47(16), 4473-4496.
Chen, J. C., Huang, P. B., Wu, J. G., Lai, K. Y., Chen, C. C., & Peng, T. W. (2013). Advanced planning and scheduling for TFT-LCD color filter fab with multiple lines. The International Journal of Advanced Manufacturing Technology, 67(1-4), 101-110.
Chen, J. C., Su, L. H., Sun, C. J., & Hsu, M. F. (2010). Infinite capacity planning for IC packaging plants. International Journal of Production Research, 48(19), 5729-5748.
Chen, J. C., Sun, C. J., & Chen, T. L. (2015). Capacity planning for integrated circuit final test plants. International Journal of Computer Integrated Manufacturing, 28(12), 1262-1274.
Choi, B. K., & Seo, J. C. (2009). Capacity-filtering algorithms for finite-capacity planning of a flexible flow line. International Journal of Production Research, 47(12), 3363-3386.
Cochran, J. K., Horng, S. M., & Fowler, J. W. (2003). A multi-population genetic algorithm to solve multi-objective scheduling problems for parallel machines. Computers & Operations Research, 30(7), 1087-1102.
Deb, K. (1999). Multi-objective genetic algorithms: Problem difficulties and construction of test problems. Evolutionary Computation, 7(3), 205-230.
Gonçalves, J. F., de Magalhães Mendes, J. J., & Resende, M. G. (2005). A hybrid genetic algorithm for the job shop scheduling problem. European Journal of Operational Research, 167(1), 77-95.
Graves, S. C. (1981). A review of production scheduling. Operations Research, 29(4), 646-675.
Hajela, P., & Lin, C. Y. (1992). Genetic search strategies in multicriterion optimal design. Structural Optimization, 4(2), 99-107.
Jain, A. K., & Elmaraghy, H. A. (1997). Production scheduling/rescheduling in flexible manufacturing. International Journal of Production Research, 35(1), 281-309.
Jones, D. F., Mirrazavi, S. K., & Tamiz, M. (2002). Multi-objective meta-heuristics: An overview of the current state-of-the-art. European Journal of Operational Research, 137(1), 1-9.
Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety, 91(9), 992-1007.
Lee, I., Sikora, R., & Shaw, M. J. (1997). A genetic algorithm-based approach to flexible flow-line scheduling with variable lot sizes. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 27(1), 36-54.
Lei, D. (2009). Multi-objective production scheduling: a survey. The International Journal of Advanced Manufacturing Technology, 43(9-10), 926-938.
Loukil, T., Teghem, J., & Tuyttens, D. (2005). Solving multi-objective production scheduling problems using metaheuristics. European Journal of Operational Research, 161(1), 42-61.
Murata, T., Ishibuchi, H., & Tanaka, H. (1996). Multi-objective genetic algorithm and its applications to flowshop scheduling. Computers & Industrial Engineering, 30(4), 957-968.
Pasupathy, T., Rajendran, C., & Suresh, R. K. (2006). A multi-objective genetic algorithm for scheduling in flow shops to minimize the makespan and total flow time of jobs. The International Journal of Advanced Manufacturing Technology, 27(7-8), 804-815.
Quadt, D., & Kuhn, H. (2007). Batch scheduling of jobs with identical process times on flexible flow lines. International Journal of Production Economics, 105(2), 385-401.
Tay, J. C., & Ho, N. B. (2008). Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems. Computers & Industrial Engineering, 54(3), 453-473.
Wang, S., Ali, S., & Gotlieb, A. (2013). Minimizing test suites in software product lines using weight-based genetic algorithms. Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, 1493-1500.
Xia, W., & Wu, Z. (2005). An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems. Computers & Industrial Engineering, 48(2), 409-425.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *