帳號:guest(18.225.156.102)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):趙晟豪
作者(外文):Chao, Sheng Hao
論文名稱(中文):角度效應對於水在微通道內流動沸騰之影響
論文名稱(外文):Effect of inclination on flow boiling of water in micro-channel
指導教授(中文):許文震
王啟川
指導教授(外文):Sheu, Wen Jenn
Wang, Chi Chuan
口試委員(中文):王訓忠
陳炎洲
口試委員(外文):Wong, Shwin Chung
Chen, Yen Cho
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:103033619
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:72
中文關鍵詞:流動沸騰微通道角度效應
外文關鍵詞:flow boilingmicro-channeleffect of inclination
相關次數:
  • 推薦推薦:0
  • 點閱點閱:147
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
本研究以實驗進行,以水作為工作流體,控制系統出口壓力為110kPa,並改變不同的實驗參數,探討在直徑570 μm之微通道熱沉內流動沸騰熱傳及壓降特性;其控制實驗參數分別為質量通率(110、200 kg/m2s)、加熱通率(100、200 kW/m2)、入口乾度(0.1 ~ 0.6)及通道傾斜角度( -90°垂直向下流動至90°垂直向上流動),再配合高速攝影觀察本實驗系統在不同效應下所對應的結果。
實驗結果顯示,壓降會隨質量通率及乾度的增加而上升,且角度效應對於壓降的影響並不大,其實驗值約15 %以內的變化,而熱傳方面會有較大的影響。根據熱傳係數的數據顯示,在質量通率為110 kg/m2s,大多是隨乾度增加而遞減,其中以-90°的結果較特殊;相反的,在質量通率為200 kg/m2s的時候,熱傳係數是隨乾度增加而遞增,其中在高乾度的熱傳係數以-90°垂直向下流動為最佳。
This study experimentally investigates the flow boiling of water within a micro-channel heat sink with a hydraulic diameter of 570 μm and fixed the outlet pressure at 110 kPa. The boiling tests are carried out for the mass flux from 110 to 200 kg/m2s, the vapor mass quality from 0.1 to 0.6, the heat flux from 100 to 200 kW/m2 and the inclined angle from -90°(vertical downward) to 90°(vertical upward).
The results show that pressure drops increase as mass flux and quality increase, and the effect of inclination is not significant due to the variation less than 15%. For the mass flux of 110 kg/m2s, the heat transfer coefficients will decrease as the quality increases. However, there are some special results for -90 °vertical downward flow. On the contrary, the heat transfer coefficients of 200 kg/m2s will increase with the quality. The best heat transfer coefficient occurs at -90 °vertical downward flow with high quality.
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
符號說明 X
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究目的 8
1.4 實驗操作參數 8
第二章 實驗原理 9
2.1 工作流體 9
2.2 資料分析 9
2.2.1 入口蒸汽乾度 9
2.2.2 兩相沸騰熱傳係數 10
2.2.3 兩相流動壓降 11
2.3 經驗式分析 13
2.3.1 熱傳係數經驗式 13
2.3.2 壓降經驗式 15
2.3.3 經驗式誤差 17
第三章 實驗設備與測量方法 18
3.1 實驗系統 18
3.1.1 預熱段 18
3.1.2 測試段 19
3.1.3 冷凝段 19
3.2 實驗設備及量測儀器 20
第四章 結果與討論 22
4.1 兩相沸騰熱傳係數分析 22
4.1.1 質量通率之影響 22
4.1.2 蒸氣乾度之影響 22
4.1.3 加熱通率之影響 23
4.1.4 傾斜角度之影響 23
4.1.5 熱傳係數實驗值與經驗式比較 46
4.1.6 實驗值與文獻之比較 51
4.2 兩相流動壓降分析 54
4.2.1 質量通率之影響 54
4.2.2 蒸氣乾度之影響 54
4.2.3 加熱通率之影響 54
4.2.4 傾斜角度之影響 55
4.2.5 壓降實驗值與經驗式比較 61
第五章 結論與未來展望 65
5.1 結論 65
5.2 未來展望 66
參考文獻 67
附錄A:無因次參數表 71
附錄B:不準度分析 72
[1] Gordon E. Moore, “Cramming more components onto integrated circuits,” Electronics, Vol. 38, pp. 114–117, 1965.
[2] D.B. Tuckerman and R.F.W. Pease, “High-performance heat sinking for VLSI,” IEEE Electron device letters, Vol. 2, No. 5, pp. 126-129, 1981.
[3] S. Kim and I. Mudawar, “Review of databases and predictive methods for heat transfer in condensing and boiling mini/micro-channel flows,” International Journal of Heat and Mass Transfer, Vol. 77, pp. 627-652, 2014.
[4] 潘欽,“沸騰熱傳與雙相流”,俊傑書局股份有限公司,2001。
[5] S.G. Kandlikar, “Heat transfer mechanisms during flow boiling in microchannels,” Journal of Heat Transfer, Vol. 126, pp. 8-16, 2004.
[6] P.A. Kew and K. Cornwell, “Correlations for the prediction of boiling heat transfer in small-diameter channels,” Applied Thermal Engineering, Vol. 17, pp. 705-715, 1997.
[7] S. Mukherjee and I. Mudawar, “Pumpless loop for narrow channel and micro-channel boiling,” Journal of Electronic Packaging, Vol. 125, pp. 431-441, 2003.
[8] W. Qu and I. Mudawar, “Flow boiling heat transfer in two-phase micro-channel heat sinks- I. Experimental investigation and assessment of correlation methods,” International Journal of Heat and Mass Transfer, Vol.46, pp. 2755-2771, 2003.
[9] W. Qu and I. Mudawar, “Flow boiling heat transfer in two-phase micro-channel heat sinks- II. Annular two-phase flow model,” International Journal of Heat and Mass Transfer, Vol. 46, pp. 2773-2784, 2003.
[10] M.E. Steinke and S.G. Kandlikar, “An experimental investigation of flow boiling characteristics of water in parallel microchannels,” Journal of Heat Transfer, Vol. 126, pp. 518-526, 2004.
[11] S.G. Kandlikar and P. Balasubramanian, “An experimental study on the effect of gravitational orientation on flow boiling of water in 1054 ×197 μm parallel minichannels,” Journal of Heat Transfer, Vol. 127, pp. 820-829 , 2005.
[12] C. Romain, R. Remi and B. Jocelyn, “Flow boiling heat transfer in minichannels at high saturation temperatures: Part I - Experimental investigation and analysis of the heat transfer mechanisms,” International Journal of Heat and Mass Transfer, Vol. 87, pp. 636-652, 2015.
[13] J.G. Collier and J.R. Thome, “Convective boiling and condensation,” 3rd Edition, ch2 and ch3, Oxford University Press , 1994.
[14] R.W. Lockhart and R.C. Martinelli, “Proposed correlation of data for isothermal two-phase, two-component flow in pipes,” Chemical Engineering and Processing, Vol. 45, No. 1, pp. 39-48, 1949.
[15] J. Lee and I. Mudawar, “Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part II - heat transfer characteristics,” International Journal of Heat and Mass Transfer, Vol. 48, pp. 941-955, 2005.
[16] W. Li and Z. Wu, “A general correlation for evaporative heat transfer in micro/ mini-channels,” International Journal of Heat Mass Transfer, Vol. 53, pp. 1778-1787, 2010.
[17] S.G. Kandlikar, “A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes,” Journal of Heat Transfer, Vol. 112, pp. 219-228, 1990.
[18] S.G. Kandlikar and P. Balasubramanian, “An extension of the flow boiling correlation to transition, laminar, and deep laminar flows in minichannels and microchannels,” Heat Transfer Engineering, Vol. 25, No. 3, pp. 86-93, 2004.
[19] S.M. Kim and I. Mudawar, “Universal approach to predicting saturated flow boiling heat transfer in mini/micro-channels - Part I. Dryout incipience quality,” International Journal of Heat and Mass Transfer, Vol. 64, pp. 1226-1238, 2013.
[20] S.M. Kim and I. Mudawar, “Universal approach to predicting saturated flow boiling heat transfer in mini/micro-channels - Part II. Two-phase heat transfer coefficient,” International Journal of Heat and Mass Transfer, Vol. 64, pp. 1239-1256, 2013.
[21] A.E. Dukler, M. Wicks and R.G. Cleveland, “Frictional pressure drop in two-phase flow: A. A comparison of existing correlation for pressure loss and holdup,” Journal of Advances in Chemical Engineering, Vol. 10, No. 1, pp. 38-43, 1964.
[22] H. Muller-Steinhagen and K. Heck, “A simple friction pressure drop correlation for two-phase flow in pipes,” Chemical Engineering and Processing, Vol. 20, pp. 297-308, 1986.
[23] S.M. Zivi, “Estimation of steady-state steam void-fraction by means of the principle of minimum entropy production,” Journal of Heat Transfer, Vol. 86, pp. 247-252, 1964.
[24] K. Mishima and T. Hibiki, “Some characteristics of air-water two-phase flow in small diameter vertical tubes,” International Journal of Multiphase Flow, Vol. 22, pp. 703-712, 1996.
[25] J. Lee and I. Mudawar, “Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part I-pressure drop characteristics,” International Journal of Heat and Mass Transfer, Vol. 48, pp. 928-940, 2005.
[26] K.H. Bang, K.K. Kim, S.K. Lee and B.W. Lee, “Pressure effect on flow boiling heat transfer of water in minichannels,” International Journal of Thermal Sciences, Vol. 50, pp. 280-286, 2011.
[27] L.C. Hsu, S.W. Cion, K.W. Lin and C.C. Wang, “An experimental study of inclination on the boiling heat transfer characteristics of a micro-channel heat sink using HFE-7100,” International Communications in Heat and Mass Transfer, Vol. 62, pp. 13-17, 2015.
[28] C.C. Wang, W.J. Chang, C.H. Dai, Y.T. Lin, K.S. Yang, “Effect of inclination on the convective boiling performance of a microchannel heat sink using HFE-7100,” Experimental Thermal and Fluid Science, Vol. 36, pp. 143-148, 2012.
[29] P. Zhou, K.E. Goodson and J. Santiago, U.S. Patent 6994151 B2, 2006.
[30] M.P. David, J.E. Steinbrenner, J. Miler and K.E. Goodson, “Adiabatic and diabatic two-phase venting flow in a microchannel,” International Journal of Multiphase Flow ,Vol. 37, pp. 1135-1146, 2011.
[31] M.P. David, J. Miler , J.E. Steinbrenner, Y. Yang , M. Touzelbaev and K.E. Goodson, “Hydraulic and thermal characteristics of a vapor venting two-phase microchannel heat exchanger”, International Journal of Heat and Mass Transfer, Vol. 54, pp. 5504-5516, 2011.
[32] S.G. Kandlikar, “History, Advances, and challenges in liquid flow and flow boiling heat transfer in microchannels: A critical review,” Journal of Heat Transfer, Vol. 134, No. 3, 2012.
[33] K. Dutkowski, “Two-phase pressure drop of air-water in minichannels,” International Journal of Heat and Mass Transfer, Vol. 52, pp. 5185-5192, 2009.
[34] 王啟川,“熱交換設計”,五南圖書出版股份有限公司,2007。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *