帳號:guest(3.22.248.100)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃子容
作者(外文):Huang,Tze Jung
論文名稱(中文):質子與強子治療蒙地卡羅模擬
論文名稱(外文):Proton and Hadron Therapy Simulation Through Monte Carlo Methods
指導教授(中文):洪哲文
指導教授(外文):Hung,Che Wun
口試委員(中文):陳信文
陳玉彬
黃美嬌
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:103033614
出版年(民國):105
畢業學年度:104
語文別:中文英文
論文頁數:63
中文關鍵詞:質子蒙地卡羅模擬治療
外文關鍵詞:protonmonte carlosimulationtherapy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:153
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
光子和電子刀等治療方式已經日漸普及化,但是在殲滅癌細胞時易於破壞健康組織,未達到醫療的期望和治療最終效果。因此本研究著重在運用質子束以及強子射束進行劑量模擬,預測射束的深度劑量從前段較低處,進而中段劑量急遽爬升至最高點,而後急遽下降的曲線特點,以達成殲滅癌細胞的同時又可以不影響健康組織的最終目的,而在射束高劑量區的深度位置分布與射束能量及能量準確性有關係,這在治療癌症上面而言可以善加利用於控制能量大小將劑量準確的投射在入射方向的腫瘤所在精確的位置,但同時不影響在周遭正常未受感染的細胞組織,因此對垂直入射的方向上的橫向劑量分布預測亦是主要考量。
此篇研究主要目的是建立一套治療模擬模型,以便模擬治療射束在人體之中的劑量和治療效果。在人類體內有百分之七、八十的比率為水,所以本篇論文採用透過建立一個水立方的模型來近似人體在治療射束治療之下推得的深度劑量曲線,分析並拿來與電子刀、光子治療和強子等等治療比對。在偵測方面,在質子束的入口處和水立方的內部各放置一個具有空間解析度為一毫米的條狀偵測器,分別作為監控和量測數值使用。首先,利用探測器得知該位置的質子束大小及形狀,再由水立方之中的探測器量測深度劑量曲線與蒙地卡羅模擬進行比對得知質子束的能量。再來,因為在實際情形之下,各種粒子皆有它的不同分布曲線狀況,所以經由蒙地卡羅的邏輯理論,將各種平均自由徑及分布狀態和粒子配對之後,模擬得知的結果綜合作圖,比對各種治療的利弊得失以及副作用。
最後得知,理想的質子射束治療可以減低組織前段以及後段的吸收劑量,達到預期的效能以及劑量集中化,電子刀以及光子刀則會劑量集中在前面區段,所以破壞程度稍大,但是當運用強子(或碳離子)射束治療同時,能量甚至集中度可以超越質子治療,唯一的缺點就是後段劑量隨深度的下降趨勢不夠明顯且容易造成副作用,但是整體影響不大,進而成為目前放射性治療的主要發展重點。
To date, photon radiation therapy and electron knife therapy are quite popular. However, there are still many side effects to the uninfected tissues. Therefore, through my thesis I am going to focus on the proton and hadron beam therapy, especially on the dose simulation. To achieve the goal of killing the infected tumor cells and also without influencing the surrounding normal tissues, we have to set up a mathematical model to predict the dose distribution along the beam path.
The main objective of this thesis is to build up a radiation therapy model to simulate the beam therapy in human cells and to observe the dose effectiveness. It is known that the percentage of water in human cells is about seventy to eighty percent, it is reasonable to take human cells as a water phantom cubic model in the realistic situation. Later on, by applying different kinds of beamlines such as electron knife, photon radiation, and hadron and proton particles, we can compare the dosage distribution by distribution plot simulated through the Monte Carlo simulation package Geant4.
In summary, the most ideal beamlines from the simulation results is the proton and/or hadron beam. Comparing with the electron and photon beams, the dosage of proton and hadron can be raised up to almost one hundred percent which minimizes the side effects of residual dosage on normal tissues. The main defects of the carbon beam for the hadron therapy is the fragmentation tail. However, the dose range and damage compared to the peak of the dosage is too tiny and can be ignored. The hadron therapy as well as the proton therapy are still the most effective treatment to kill the tumors nowadays.
摘要 II
Abstract III
誌謝 IV
第一章 緒論 1
1.1質子治療 2
1.1.1治療技術 2
1.1.2硬體設備 3
1.2布拉格峰 5
1.3文獻回顧 6
1.4研究動機與目標 7
第二章 粒子碰撞與蒙地卡羅理論 10
2.1 粒子碰撞 10
2.1.1碰撞之電磁反應 11
2.1.2碰撞之核反應 14
2.2 粒子碰撞理論 15
2.2.1 碰撞截面 15
2.2.2 平均自由徑 19
2.3 碰撞之能量損耗 19
2.3.1 能量機率分布 20
2.3.2 能量損耗計算 22
2.3.3 阻擋本領 24
2.3.4 貝特-布洛赫定理 25
2.3.5 射程 28
2.4 質子碰撞與散射 31
2.5 蒙地卡羅模擬 34
2.5.1 計算理論和流程 35
2.5.2 蒙地卡羅演算法 37
第三章 模擬方法和模型建構 40
3.1模擬方法和計算流程 40
3.2模擬架構的建立 42
第四章 結果與討論 45
4.1劑量曲線 45
4.2電子與光子治療 47
4.3質子與強子治療 52
4.4多重布拉格峰與布拉格擴展峰SOBP 54
第五章 結論與未來工作建議 55
5.1結論 57
5.2未來工作建議 58
參考文獻 59
附錄 61
[1] Matthew M. Ladra , Torunn I. Yock, Proton Radiotherapy for Pediatric Sarcoma. Cancers, 6, p.112-127, 2014
[2] Flanz J. Particle accelerators. In: Delaney TF, Kooy HM, eds. Proton and Charged Particle Radiotherapy. Philadelphia, PA: Lippincott Williams & Wilkins, p.27-32, 2008
[3] Vu Nguyen, Pummeling Cancer With Protons, New York Times, Portfolio, 2008
[4] Harald Paganetti , Thomas Bortfeld, Proton Beam Radiotherapy - The State of the Art1, Medical Physics, 6, p.4-9, 2005
[5] Hogstom K.4., Mills M.D. and Almond P.R., Electron beam dose calculations, Medical Physics, 26, p.445-459, 1981
[6] B.Gottschalk, A.M.Koehler, R.J.Schneider, Multiple Coulomb Scattering of 160 MeV Protons, Medical Physics, 74, p.467, 1993
[7] L. Hong, M.Goitein, M. Bucciolini, A pencil beam algorithm for proton dose calculations, Medical Physics, 41, p.1305-30, 1996
[8] Petti P., Differential-pencil-beam dose calculations for charged particles, Medical Physics, 19, p.137-49, 1992
[9] Goitein M., A technique for calculating the influence of thin inhomogeneities on charged particle beams, Medical Physics, 5 , p.258-64, 1978
[10] Lee M, Nahum A.E, , Webb S, An empirical method to build up a model of proton dose distribution for a radiotherapy treatment-planning package, Medical Physics, 38, p. 989-98, 1993
[11] Urie M, Goitein M, Holley W R , Chen G.T.Y., Degradation of the Bragg peak due to inhomogeneities , Medical Physics, 31, p.1-15, 1986
[12] Schardt, etc. Plans to form a passive system adapted from pastor of Defense, Medical Physics, 82, p.383-425, 2010
[13] Chen G.T.Y, Singh R.P., Castro J.R., Lyman J.T., Quivey J.M. Treatment planning for heavy ion radio therapy , Biology Physics, 5, p.1809-19, 1979


[14] Sisterson J.M., Urie M., Koehler A.M., Goitein M., Distal penetration of proton beams: the effects of air gaps between compensating bolus and patient Phys., Medical Physics, 34 , p.1309-15, 1989
[15] G. A. Pablo Cirrone, G. Cuttone, S. Guatelli, Implementation of a new Monte Carlo-GEANT4 Simulation tool for the development of a proton therapy beam line and verification of the related dose distributions, IEEE transactions on nuclear science, p.262-265, 2005
[16] U. Amaldi , A. Bianchi, Y-H Chang, A.Go , W. Hajdas, Construction, test and operation of a proton range radiography system, Nuclear Instruments and Methods in Physics Research, p. 337-344, 2011
[17] Raymond N. Kjellberg, M.D., Tetsu Hanamura, M.D., Kenneth R. Davis, M.D., Susan L. Lyons, R.N., and Raymond D. Adams, M.D., Bragg-Peak Proton-Beam Therapy for Arteriovenous Malformations of the Brain, Medical Physics, 309, p.269-274, 1983
[18] Harald Paganetti, Range uncertainties in proton therapy and the role of Monte Carlo simulations, Medical Physics, 57, 2012
[19] Matthias Rippel, Martin Soukup, A Monte Carlo dose calculation algorithm for proton therapy, Medical Physics, 31, 2004
[20] Yuanshui Zheng, Wayne Newhauser, Jonas Fontenot, Phil Taddei, Monte Carlo study of neutron dose equivalent during passive scattering proton therapy, Medical Physics, 52, 2007
[21] G.Kraft, Tumor Therapy with Heavy Charged Particles, Medical Physics, 45, p.473-S544, 2000
[22] Igor Pshenichnov, Igor Mishustin, Walter Greiner, Distributions of positron-emitting nuclei in proton and carbon-ion therapy studied with GEANT4, Medical Physics, 51, 2006
[23] K Parodi, A Mairani, S Brons, B G Hasch, F Sommerer, J Naumann, O Jakel, T Haberer, J Debus, Monte Carlo simulations to support start-up and treatment planning of scanned proton and carbon ion therapy at a synchroton-based facility, Medical Physics, 57, 2012
[24] J shin, J Perl, J Schumann, H Paganetti, B A Faddegon, A modular method to handle multiple time-dependent quantities in Monte Carlo simulations, Medical Physics, 57, 2012
[25] G. A. P. Cirrone, G. Cuttone, P. A. Lojacono, , 62-MeV Proton Beam for the Treatment of Ocular Melanoma at Laboratori Nazionali del Sud-INFN, IEEE, 51, 2004
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *