|
[1] F. D. Naal, F. M. Impellizzeri, U. Lenze, V. Wellauer, R. von Eisenhart-Rothe, and M. Leunig, “Clinical improvement and satisfaction after total joint replacement: a prospective 12-month evaluation on the patients' perspective,” Quality of Life Research, vol. 24, no. 12, pp. 2917-2925, 2015. [2] C. M. Kozma, T. Slaton, A. Paris, and E. T. Edgell, “Cost and utilization of healthcare services for hip and knee replacement,” Journal of Medical Economics, vol. 16, no. 7, pp. 888-896, 2013. [3] M. S. Ibrahim, M. A. Khan, I. Nizam, and F. S. Haddad, “Peri-operative interventions producing better functional outcomes and enhanced recovery following total hip and knee arthroplasty: an evidence-based review,” BMC Medicine, vol. 11, no. 1, 2013. [4] M. R. Bloomfield, and W. J. Hozack, “Total hip and knee replacement in the mature athlete,” Sports Health, vol. 6, no. 1, pp. 78-80, 2014. [5] A. L. Lima, P. R. Oliveira, V. C. Carvalho, E. S. Saconi, H. B. Cabrita, and M. B. Rodrigues, “Periprosthetic joint infections,” Interdisciplinary Perspectives on Infectious Diseases, 2013. [6] S. M. Kurtz, E. Lau, H. Watson, J. K. Schmier, and J. Parvizi, “Economic burden of periprosthetic joint infection in the United States,” The Journal of Arthroplasty, vol. 27, no. 8, pp. 61-65. e1, 2012. [7] W. W. Schairer, T. P. Vail, and K. J. Bozic, “What are the rates and causes of hospital readmission after total knee arthroplasty?,” Clinical Orthopaedics and Related Research, vol. 472, no. 1, pp. 181-187, 2014. [8] E. Stranges, A. Russo, and B. Friedman, “Procedures With the Most Rapidly Increasing Hospital Costs, 2004-2007,” Value in Health, 2009. [9] B. H. Kapadia, R. A. Berg, J. A. Daley, J. Fritz, A. Bhave, and M. A. Mont, “Periprosthetic joint infection,” The Lancet, vol. 387, no. 10016, pp. 386-394, 2016. [10] A. Shahi, and J. Parvizi, “Prevention of Periprosthetic Joint Infection,” The Archives of Bone and Joint Surgery, vol. 3, no. 2, pp. 72-81, 2015. [11] J. A. Singh, and D. G. Lewallen, “Better functional and similar pain outcomes in osteoarthritis compared to rheumatoid arthritis after primary total knee arthroplasty: a cohort study,” Arthritis Care and Research (Hoboken), vol. 65, no. 12, pp. 1936-1941, 2013. [12] K. Sinusas, “Osteoarthritis: Diagnosis and Treatment,” American Family Physician, vol. 85, no. 1, pp. 49-56, 2012. [13] X. Qu, Z. Zhai, H. Li, X. Liu, Z. Zhu, Y. Wang, G. Liu, and K. Dai, “PCR-Based Diagnosis of Prosthetic Joint Infection,” Journal of Clinical Microbiology, vol. 51, no. 8, pp. 2742-2746, 2013. [14] L. Pulido, E. Ghanem, A. Joshi, J. J. Purtill, and J. Parvizi, “Periprosthetic joint infection: the incidence, timing, and predisposing factors,” Clinical Orthopaedics and Related Research, vol. 466, no. 7, pp. 1710-1715, 2008. [15] R. L. Barrack, G. J. Hoffman, W. V. Tejeiro, and L. J. Carpenter, “Surgeon work input and risk in primary versus revision total joint arhroplasty,” Journal of Arthroplasty, vol. 10, no. 3, pp. 281-286, 1995. [16] S. Kurtz, K. Ong, E. Lau, F. Mowat, and M. Halpern, “Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030,” The Journal of Bone & Joint Surgery, vol. 89, no. 4, pp. 780-785, 2007. [17] J. Parvizi, B. Zmistowski, E. F. Berbari, T. W. Bauer, B. D. Springer, C. J. Della Valle, K. L. Garvin, M. A. Mont, M. D. Wongworawat, and C. G. Zalavras, “New definition for periprosthetic joint infection: from the Workgroup of the Musculoskeletal Infection Society,” Clinical Orthopaedics and Related Research, vol. 469, no. 11, pp. 2992-2994, 2011. [18] E. W. Paxton, M. C. Inacio, J. A. Singh, R. Love, S. A. Bini, and R. S. Namba, “Are There Modifiable Risk Factors for Hospital Readmission After Total Hip Arthroplasty in a US Healthcare System?,” Clinical Orthopaedics and Related Research, vol. 473, no. 11, pp. 3446-3455, 2015. [19] S. M. Jafari, C. Coyle, S. M. Mortazavi, P. F. Sharkey, and J. Parvizi, “Revision hip arthroplasty: infection is the most common cause of failure,” Clinical Orthopaedics and Related Research, vol. 468, no. 8, pp. 2046-2051, 2010. [20] M. M. Baddour, M. M. AbuElKheir, and A. J. Fatani, “Trends in antibiotic susceptibility patterns and epidemiology of MRSA isolates from several hospitals in Riyadh, Saudi Arabia,” Annals of Clinical Microbiology and Antimicrobials, vol. 5, no. 1, 2006. [21] A. Trampuz, and W. Zimmerli, “Prosthetic joint infections: update in diagnosis and treatment,” Swiss Medical Weekly, vol. 135, no. 17-18, pp. 243-251, 2005. [22] S. B. Levy, and B. Marshall, “Antibacterial resistance worldwide: causes, challenges and responses,” Nature Medicine, vol. 10, pp. S122-S129, 2004. [23] B. Doebbeling, “The epidemiology of methicillin-resistant Staphylococcus aureus colonisation and infection,” Journal of chemotherapy (Florence, Italy), vol. 7, pp. 99-103, 1995. [24] C. H. Wang, K. Y. Lien, J. J. Wu, and G. B. Lee, “A magnetic bead-based assay for the rapid detection of methicillin-resistant Staphylococcus aureus by using a microfluidic system with integrated loop-mediated isothermal amplification,” Lab on a Chip, vol. 11, no. 8, pp. 1521-1531, 2011. [25] J. R. Lentino, “Prosthetic joint infections: Bane of orthopedists, challenge for infectious disease specialists,” Clinical Infectious Diseases, vol. 36, no. 9, pp. 1157-1161, 2003. [26] R. Huang, C. C. Hu, B. Adeli, J. Mortazavi, and J. Parvizi, “Culture-negative periprosthetic joint infection does not preclude infection control,” Clinical Orthopaedics and Related Research, vol. 470, no. 10, pp. 2717-2723, 2012. [27] W. H. Chang, C. H. Wang, S. Y. Yang, Y. C. Lin, J. J. Wu, M. S. Lee, and G. B. Lee, “Rapid isolation and diagnosis of live bacteria from human joint fluids by using an integrated microfluidic system,” Lab on a Chip, vol. 14, no. 17, pp. 3376-3384, 2014. [28] J. Gallo, M. Raska, M. Dendis, A. V. Florschuetz, and M. Kolar, “Molecular diagnosis of prosthetic joint infection. A review of evidence,” Biomedical Papers, vol. 148, no. 2, pp. 123-129, 2004. [29] A. Shahi, and J. Parvizi, “Prevention of periprosthetic joint infection: Pre-, intra-, and post-operative strategies,” SA Orthopaedic Journal, vol. 14, no. 3, pp. 52-60, 2015. [30] S. Esposito, and S. Leone, “Prosthetic joint infections: microbiology, diagnosis, management and prevention,” International Journal of Antimicrobial Agents, vol. 32, no. 4, pp. 287-293, 2008. [31] P. F. Bergin, J. D. Doppelt, W. G. Hamilton, G. E. Mirick, A. E. Jones, S. Sritulanondha, J. M. Helm, and R. S. Tuan, “Detection of periprosthetic infections with use of ribosomal RNA-based polymerase chain reaction,” The Journal of bone and joint surgery, vol. 92, no. 3, pp. 654-663, 2010. [32] J. C. Hartley, and K. A. Harris, “Molecular techniques for diagnosing prosthetic joint infections,” Journal of Antimicrobial Chemotherapy, vol. 69 Suppl 1, pp. i21-24, 2014. [33] P. Alijanipour, H. Bakhshi, and J. Parvizi, “Diagnosis of periprosthetic joint infection: the threshold for serological markers,” Clinical Orthopaedics and Related Research, vol. 471, no. 10, pp. 3186-3195, 2013. [34] C. L. Jacovides, R. Kreft, B. Adeli, B. Hozack, G. D. Ehrlich, and J. Parvizi, “Successful identification of pathogens by polymerase chain reaction (PCR)-based electron spray ionization time-of-flight mass spectrometry (ESI-TOF-MS) in culture-negative periprosthetic joint infection,” The Journal of bone and joint surgery, vol. 94, no. 24, pp. 2247-2254, 2012. [35] B. Vandercam, S. Jeumont, O. Cornu, J. C. Yombi, F. Lecouvet, P. Lefevre, L. M. Irenge, and J. L. Gala, “Amplification-based DNA analysis in the diagnosis of prosthetic joint infection,” The Journal of Molecular Diagnostics, vol. 10, no. 6, pp. 537-543, 2008. [36] P. C. Soo, C. C. Tseng, S. R. Ling, M. L. Liou, C. C. Liu, H. J. Chao, T. Y. Lin, and K. C. Chang, “Rapid and sensitive detection of Acinetobacter baumannii using loop-mediated isothermal amplification,” The Journal of Microbiological Methods, vol. 92, no. 2, pp. 197-200, 2013. [37] A. Nocker, C. Y. Cheung, and A. K. Camper, “Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells,” Journal of Microbiological Methods, vol. 67, no. 2, pp. 310-320, 2006. [38] H. N. Joshi, “DNA interaction antimicrobial and cytotoxic activities of copper (II) ruthenium (II) and ruthenium (III) complexes”, vol. 6, pp. 153-188, 2013. [39] K. Rudi, B. Moen, S. M. Dromtorp, and A. L. Holck, “Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples,” Applied and Environmental Microbiology, vol. 71, no. 2, pp. 1018-1024, 2005. [40] T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, and T. Hase, “Loop-mediated isothermal amplification of DNA,” Nucleic Acids Research, vol. 28, no. 12, pp. e63, 2000. [41] N. Tomita, Y. Mori, H. Kanda, and T. Notomi, “Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products,” Nature Protocols, vol. 3, no. 5, pp. 877-882, 2008. [42] N. Maluf, "An introduction to microelectromechanical systems engineering," 2002. [43] C. M. Ho, and Y. C. Tai, “Micro-electro-mechanical-systems (MEMS) and fluid flows,” Annual Review of Fluid Mechanics, vol. 30, no. 1, pp. 579-612, 1998. [44] F. E. Tay, "Microfluidics and BioMEMS applications" 2002. [45] G. M. Whitesides, “The origins and the future of microfluidics,” Nature, vol. 442, no. 7101, pp. 368-373, 2006. [46] S. J. Lee, and S. Y. Lee, “Micro total analysis system (micro-TAS) in biotechnology,” Applied Microbiology and Biotechnology, vol. 64, no. 3, pp. 289-299, 2004. [47] A. Manz, N. Graber, and H. á. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sensors and actuators B: Chemical, vol. 1, no. 1, pp. 244-248, 1990. [48] H. A. Stone, A. D. Stroock, and A. Ajdari, “Engineering Flows in Small Devices,” Annual Review of Fluid Mechanics, vol. 36, no. 1, pp. 381-411, 2004. [49] H. K. Nogva, S. M. Dromtorp, H. Nissen, and K. Rudi, “Ethidium Monoazide for DNA-Based Differentiation of Viable and Dead Bacteria by 5'-Nuclease PCR,” Biotechniques, vol. 34, no. 4, pp. 804-813, 2003. [50] C. H. Wang, C. J. Chang, J. J. Wu, and G. B. Lee, “An integrated microfluidic device utilizing vancomycin conjugated magnetic beads and nanogold-labeled specific nucleotide probes for rapid pathogen diagnosis,” Nanomedicine, vol. 10, no. 4, pp. 809-818, 2014. [51] W.H. Chang, S.Y. Yang, C.H. Wang, M.A. Tsai, P.C. Wang, T.Y. Chen, S.-C. Chen, and G.-B. Lee, “Rapid isolation and detection of aquaculture pathogens in an integrated microfluidic system using loop-mediated isothermal amplification,” Sensors and Actuators B: Chemical, vol. 180, pp. 96-106, 2013. [52] W. H. Chang, C. H. Wang, C. L. Lin, J. J. Wu, M. S. Lee, and G. B. Lee, “Rapid detection and typing of live bacteria from human joint fluid samples by utilizing an integrated microfluidic system,” Biosensors and Bioelectronics, vol. 66, pp. 148-154, 2015. [53] H. Tsuji, T. Tsuru, and K. Okuzumi, “Detection of Methicillin-Resistant Staphylococcus Aureus in Donor Eye Preservation Media by Polymerase Chain Reaction,” Japanese Opthalmological Society, vol. 42, no. 5, pp. 352-356, 1998.
|