帳號:guest(3.133.131.29)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳彥任
作者(外文):Chen, Yan Ren
論文名稱(中文):滾印製作排列式銀奈米線束電極及應用於太陽能電池
論文名稱(外文):Development of Roll-Coated Aligned-Silver Nanowire-Bundle Electrode and Its Application to Solar Cells
指導教授(中文):劉通敏
洪健中
指導教授(外文):Liou, Tong Miin
Hong, Chien Chong
口試委員(中文):郭宗枋
黃國柱
口試委員(外文):Guo, Tzung Fang
Hwang, Kuo Chu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:103033605
出版年(民國):105
畢業學年度:105
語文別:中文
論文頁數:144
中文關鍵詞:透明導電薄膜銀奈米線滾印製程排列成束有機太陽能電池
外文關鍵詞:Transparent conductive electrodeAgNWsRoll coatingAlignedBundledSolar cell
相關次數:
  • 推薦推薦:0
  • 點閱點閱:321
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
摘要
透明導電薄膜廣泛的被應用於太陽能電池、發光元件、觸碰螢幕等消費性電子產品之中,而傳統的透明導電薄膜材料銦錫氧化物(ITO)由於其易碎的性質,無法滿足未來軟性電子產品的應用需求,在軟性透明電極材料之中,因為銀奈米線可配合濕式製程與卷對卷(Roll to roll)製程整合,進行大面積連續的製造以降低成本,以及銀奈米線電極優秀的導電潛力,本研究以銀奈米線作為透明電極薄膜材料並應用於有機太陽電池之上。
本研究提出在保有滾印製程優勢下,藉由調整製程參數以及銀奈米線溶液性質,達到排列以及成束銀奈米線的動作。在滾印過程之中,銀奈米線濕膜因為熱對流關係將銀奈米線帶往乾燥破洞的兩旁,當熱對流停止後,濕膜則因為表面張力持續擠壓銀奈米線,同時滾印方向產生的牽引力將濕膜破洞沿滾印方向拉扯,藉此將銀奈米線成束並且排列。傳統滾印隨機分布的銀奈米線電極,透光度導電度約為14.9 Ω sq-1以及89.8%,電性均勻度CV值則為0.63%,且在膠帶以及彎折測試之中,電極被破壞致使片電阻值明顯的上升。排列銀奈米線束電極在透光度89.4%的情況下展現出5.88 Ω sq-1的超低片電阻值,除此之外,本研究中以正交的鋪設方法實現均勻度CV值0.1%;而在電極的安定性部分,銀奈米線束電極可在室溫中存放30天以上不影響其導電效能;另外以膠帶反覆沾黏100次後電阻值只略上升至原先的103%,展現了成束排列銀奈米線電極對基材穩固的沾附性;在彎折測試中,成束排列的銀奈米線可在半徑1 mm下彎折3000次而片電阻值僅上升至108%。在保有滾印製程優勢下,本研究成功藉由成束以及排列銀奈米線大幅的提升了電極的表現。
本研究建立了滾印排列銀奈米線束製程模型,完整描述熱對流以及表面張力作用造成的濕膜破洞大小,並進一步擠壓銀奈米線成束排列,該模型可利用於未來在不同表面性質基材鋪設。本研究以創新滾印製程配合超高徑長比銀奈米線,研製出高效能方向性成束銀奈米線電極,並配合鋪設導電高分子PEDOT:PSS作為電洞傳輸層,並以P3HT:PCBM作為主動層製作,軟性有機薄膜太陽能電池,達成效率1.84%,而ITO製作出之太陽能電池效率則為2.01%,其效率已達ITO電極有機太陽能電池91%。
Abstract
Roller assisted, coated, and silver nanowire (AgNW) based transparent conductive film exhibits promising potential for industrial-scale manufacturing, flexible, and light-weight electronics such as solar cells, touch panel, and wearable sensors. Efforts have been made to overcome the disadvantages of AgNW based transparent conductive film through encapsulating functional materials. For instance, graphene or metal oxide encapsulating on AgNW network to insulate and strengthen AgNW network and minimize junction resistance between AgNWs. However, the random distributed-AgNW network under functional materials is not yet to be optimized. In this work, we demonstrate aligned-AgNW-bundles network via adjusting operating conditions of roll coating process. The aligned-AgNW-bundles network coated on PET substrate is then immersing into water to remove PVP (Polyvinylpyrrolidone) residual and pressed to smooth the surface. Highly aligned and bundled AgNW network results in superior optoelectronic properties (sheet resistance 5.88Ω sq−1 at transmittance 89.4 %. Also, remarkable adhesion to the substrate, electric uniformity, mechanical properties, and stability under heat stress are shown in this work. As for the electric uniformity, owing to the alignment of AgNW, the coefficient of variance of aligned-AgNW-bundles is 0.19% comparing to the electric uniformity of random-distributed-AgNW network 0.63%. Aligned-AgNW-bundles network is able to maintain conductivity even under 100 times 3 M scotch tape peeling cycles. The sheet resistance of aligned-AgNW-bundles network increase to 103% after peeling cycles which is much more secure than random-distributed-AgNW network (290%). Furthermore, the sheet resistance of aligned-AgNW-bundles network after 30 days storage in room temperature condition slightly increases to 113%. As for the mechanical properties, aligned-AgNW-bundles network can sustain 1 mm radius bending 3000 times and even maintain conductive during 7 times folding.
In this work, I demonstrate well-perform AgNW network through synthesizing AgNW with ultra-high aspect ratio and optimizing roll coating process. Followed with coating process, I build up a model to depict the formation of aligned-AgNW-bundles network during coating process. With the factors of surface tension and evaporation, the model can precisely predict the hollow sizes of wetting film and further to calculate the alignment of AgNW. In the end of this work, the PEDOT:PSS is coated on aligned-AgNW-bundles network. P3HT:PCBM is then spin coated on PEDOT:PSS as active layer of organic solar cell. The efficiency of aligned-AgNW-bundles network based solar cell can exceed 1.84% comparing to ITO based solar cell 2.01%.
目錄

摘要1
Abstract3
目錄6
圖目錄8
表目錄.12
第一章 緒論13
1.1 傳統透明電極薄膜13
1.2 軟性透明電極薄膜15
1.2.1 金屬網格透明電極薄膜17
1.2.2 導電高分子透明電極薄膜18
1.2.3 石墨烯透明電極薄膜20
1.2.4 奈米碳管透明電極薄膜21
1.2.5 金屬奈米線透明電極薄膜22
1.2.6 軟性透明電極薄膜材料總結24
1.3 銀奈米線透明電極薄膜之瓶頸27
1.3.1 銀奈米線合成以及尺寸影響27
1.3.2 銀奈米線接觸電阻消除30
1.3.3 銀奈米線電極表面粗糙度降低34
1.3.4 銀奈米線電極均勻度提升35
1.3.5 銀奈米線電極沾附性提升37
1.3.6 銀奈米線電極安定性提升39
1.4 複合式銀奈米線軟性透明電極薄膜40
1.5 排列銀奈米線電極.43
1.6 研究動機44
1.7 研究目的與方法45
1.8 論文架構48
第二章 實驗系統與材料48
2.1 滾印系統48
2.2 銀奈米線合成系統與材料50
2.3 基材選用51
第三章 超高徑長比銀奈米線合成方法52
3.1 超高徑長比銀奈米線銀奈米線53
3.2 銀奈米線合成與純化54
3.3 銀奈米線合成加熱溫度及時間影響57

第四章 滾印成束排列銀奈米線62
4.1 滾印製程原理介紹及卷對卷製程近況優勢介紹62
4.1.1 滾印製程原理介紹62
4.1.2 卷對卷滾印製程近況及優勢64
4.2 滾印成束排列銀奈米線透明電極薄膜.66
4.2.1 滾印成束排列銀奈米線電極原理66
4.2.2 滾印成束排列銀奈米線製程步驟84
4.2.3 成束排列銀奈米線排列方向性探討88
4.3 成束排列銀奈米線電極後處理93
4.3.1 水浴法去除高分子分散劑包覆層93
4.3.2 熱壓降低表面粗糙以及銀奈米線接觸點融合96
4.4 結果與討論99
第五章 成束排列銀奈米線電極特性100
5.1 成束排列銀奈米線電極透光及導電度量測100
5.2 成束排列銀奈米線電極均勻度量測104
5.3 成束排列銀奈米線電極沾粘性量測106
5.4 成束排列銀奈米線電極表面粗糙度量測108
5.5 成束排列銀奈米線電極熱疲勞測試111
5.6 成束排列銀奈米線電極安定性測試112
5.7 成束排列銀奈米線電極撓性測試114
5.8 成束排列銀奈米線焦耳壓力測試116
5.9 結論與討論118
第六章 有機太陽電池應用122
6.1 有機太陽能電池簡介122
6.2 有機太陽能電池結構與設計123
6.3 有機太陽能電池製程方法125
6.4 有機太陽能電池製作參數探討128
6.5 有機太陽能電池效能132
第七章 結論134
7.1 研究結論134
7.2 研究成果135
7.3 學術貢獻與技術創新138
7.4 未來工作145
參考文獻147
參考文獻
(1) Ellmer, K. Past Achievements and Future Challenges in the Development of Optically Transparent Electrodes. Nat. Photonics 2012, 6, 809–817.
(2) Kumar, A.; Zhou, C. The Race To Replace Tin-Doped Indium Oxide: Which Material Will Win? ACS Nano 2010, 4(1), 11-14.
(3) Lee, J.; Lee, P.; Lee, H. B.; Hong, S.; Lee, I.; Yeo, J. Room-Temperature Nanosoldering of a Very Long Metal Nanowire Network by Conducting-Polymer-Assisted Joining for a Flexible Touch-Panel Application. Adv. Funct. Mater. 2013, 23, 4171–4176.
(4) Liang, J.; Li, L.; Niu, X.; Yu, Z.; Pei, Q. Elastomeric Polymer Light-emitting Devices and Displays. Nat. Photonics 2013, 7, 817-824.
(5) Wu, C.; Kim, T. W.; Li, F.; Guo, T. Wearable Electricity Generators Fabricated Utilizing Transparent Electronic Textiles Based on Polyester/Ag Nanowires/Graphene Core−Shell Nanocomposites. ACS Nano 2016.
(6) Groep, J. V. D.; Spinelli, P.; Polman, A. Transparent Conducting Silver Nanowire Networks. Nano Lett. 2012, 12, 3138−3144.
(7) Kim, Y. H.; Sachse, C.; Machala, M. L.; May, C.; Müller-Meskamp, L.; Leo, K. Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells. Adv. Funct. Mater. 2011, 21, 1076–1081.
(8) Bae1, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y.; Kim, Y. J.; Kim, K. S.; Zyilmaz, B.; Ahn, J. H.; Hong, B. H.; Iijima, S. Roll-to-roll Production of 30-inch Graphene Films for Transparent Electrodes. Nat. Nanotechnol. 2010, 5, 574-578.
(9) Tenent, R. C.; Barnes, T. M.; Bergeson, J. D.; Ferguson, A. J.; To, B.; Gedvilas, L. M.; Heben, M. J.; Blackburn, J. L. Ultrasmooth, Large-Area, High-Uniformity, Conductive Transparent Single-Walled-Carbon-Nanotube Films for Photovoltaics Produced by Ultrasonic Spraying. Adv. Mater. 2009, 21, 3210–3216.
(10) Sánchez-Iglesias, A.; Murias, B. R.; Grzelczak, M.; Juste, J. P.; Marzán, L. M. L.; Rivadulla, F.; Duarte, M. A. C. Highly Transparent and Conductive Films of Densely Aligned Ultrathin Au Nanowire Monolayers. Nano Lett. 2012, 12, 6066−6070.
(11) Hu, L.; Kim, H. S.; Lee, J. Y.; Peumans, P.; Cui, Y. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes. ACS Nano 2010, 4(5), 2955–2963.
(12) Lee, S. J.; Kim, Y. H.; Kim, J. K.; Baik, H.; Park, J. H.; Lee, J.; Nam, J.; Park, J. H.; Lee, T. W.; Yi, G. R.; Cho, J. H. A Roll-to-Roll Welding Process for Planarized Silver Nanowire Electrodes. Nanoscale 2014, 6, 11828–11834.
(13) Deng, B.; Hsu, P. C.; Chen, C.; Chandrashekar, B. N.; Liao, L.; Ayitimuda, Z.; Wu, J.; Guo, Y.; Lin, L.; Zhou, Y.; Aisijiang, M.; Xie, Q.; Cui, Y.; Liu, Z.; Peng, H. Roll-to-Roll Encapsulation of Metal Nanowires between Graphene and Plastic Substrate for High-Performance Flexible Transparent Electrodes. Nano Lett. 2015, 15, 4206−4213.
(14) Bergin, S. M.; Chen, Y. H.; Rathmell, A. R.; Charbonneau, P.; Li, Z. Y.; Wiley, B. J. The Effect of Nanowire Length and Diameter on the Properties of Transparent, Conducting Nanowire Films. Nanoscale, 2012, 4, 1996–2004.
(15) Kuo, C. L.; Hwang, K. C. Nitrate Ion Promoted Formation of Ag Nanowires in Polyol Processes: A New Nanowire Growth Mechanism. Langmuir 2012, 28, 3722−3729.
(16) Coskun, S.; Aksoy, B.; Unalan, H. E. Polyol Synthesis of Silver Nanowires: An Extensive Parametric Study. Cryst. Growth Des. 2011, 11, 4963–4969.
(17) Araki1, T.; Jiu, J.; Nogi, M.; Koga, H.; Nagao, S.; Sugahara, T.; Suganuma, K. Low haze Transparent Electrodes and Highly Conducting Air Dried Films with Ultra-Long Silver Nanowires Synthesized by One-Step Polyol Method. Nano Research 2014, 7(2), 236–245.
(18) Lee, J. W.; Lee, P.; Lee, D.; Lee, D. D.; Ko, S. H. Large-Scale Synthesis and Characterization of Very Long Silver Nanowires via Successive Multistep Growth. Cryst. Growth Des. 2012, 12, 5598−5605.
(19) Garnett, E. C.; Cai, W.; Cha, J. J.; Mahmood, F.; Connor, S. T.; Christoforo, M. G.; Cui, Y.; McGehee, M. D.; Brongersma, M. L. Self-Limited Plasmonic Welding of Silver Nanowire Junctions. Nat. Mater. 2012, 11, 241-249.
(20) Tokuno, T.; Nogi, M.; Karakawa, M.; Jiu, J.; Nge, T. T.; Aso, Y.; Suganuma, K. Fabrication of Silver Nanowire Transparent Electrodes at Room Temperature. Nano Res. 2011, 4(12): 1215–1222.
(21) Song, T. B.; Chen, Y.; Chung, C. H.; Yang, Y.; Bob, B.; Duan, H. S.; Li, G.; Tu, K. N.; Huang, Y.; Yang, Y. Nanoscale Joule Heating and Electromigration Enhanced Ripening of Silver Nanowire Contacts. ACS Nano 2014, 8(3), 2804-2811.
(22) Cheong, H. G.; Triambulo, R. E.; Lee, G. H.; Yi, I. S.; Park, J. W. Silver Nanowire Network Transparent Electrodes with Highly Enhanced Flexibility by Welding for Application in Flexible Organic Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2014, 6, 7846−7855.
(23) Gaynor, W.; Burkhard, G. F.; McGehee, M. D.; Peumans, P. Smooth Nanowire/Polymer Composite Transparent Electrodes. Adv. Mater. 2011, 23, 2905–2910.
(24) Sun, Q.; Lee, S. J.; Kang, H.; Gim, Y.; Park, H. S.; and Cho, J. H. Positively-Charged Reduced Graphene Oxide as an Adhesion Promoter for Preparing a Highly-Stable Silver Nanowire Film. Nanoscale 2015, 7, 6798–6804.
(25) Jin, Y.; Deng, D.; Cheng, Y.; Kong, L.; Xiao, F.; Annealing-Free and Strongly Adhesive Silver Nanowire Networks with Long-Term Reliability by Introduction of a Nonconductive and Biocompatible Polymer Binder. Nanoscale 2014, 6, 4812–4818.
(26) Wang, J.; Jiu, J.; Sugahara, T.; Nagao, S.; Nogi, M.; Koga, H.; He, P.; Suganuma, K.; Uchida, H. Highly Reliable Silver Nanowire Transparent Electrode Employing Selectively Patterned Barrier Shaped by Self-Masked Photolithography. ACS Appl. Mater. Interfaces 2015, 7, 23297−23304.
(27) Jiu, J.; Wang, J.; Sugahara, T.; Nagao, S.; Nogi, M.; Koga, H.; Suganuma, K.; Hara, M.; Nakazawa, E.; Uchida, H. The Effect of Light and Humidity on the Stability of Silver Nanowire Transparent Electrodes. RSC Adv. 2015, 5, 27657–27664.
(28) Yang, L.; Zhang, T.; Zhou, H.; Price, S. C.; Wiley, B. J.; You, W. Solution-Processed Flexible Polymer Solar Cells with Silver Nanowire Electrodes. ACS Appl. Mater. Interfaces 2011, 3, 4075–4084.
(29) Song, M. K.; You, D. S.; Lim, K. L.; Park, S.; Jung, S.; Kim, C. S.; Kim, D. H.; Kim, D. G.; Kim, J. K.; Park, J. P.; Kang, Y. C.; Heo, J.; Jin, S. H.; Park, J. H.; Kang, J. W. Highly Efficient and Bendable Organic Solar Cells with Solution-Processed Silver Nanowire Electrodes. Adv. Funct. Mater. 2013, 23, 4177–4184.
(30) Lai, Y. T.; Tai, N. H. One-Step Process for High-Performance, Adhesive, Flexible Transparent Conductive Films Based on p‑Type Reduced Graphene Oxides and Silver Nanowires. ACS Appl. Mater. Interfaces 2015, 7, 18553−18559.
(31) Song, T. B. Rim, Y. S.; Liu, F.; Bob, B.; Ye, S.; Hsieh, Y. T.; Yang, Y. Highly Robust Silver Nanowire Network for Transparent Electrode. ACS Appl. Mater. Interfaces 2015, 7, 24601−24607.
(32) Kim, S.; Kim, S. Y.; Chung, M. H.; Kimb, J.; Kim, J. H. A one-step Roll-to-Roll Process of Stable AgNW/PEDOT:PSS Solution Using Imidazole as a Mild Base for Highly Conductive and Transparent Films: Optimizations and Mechanisms. J. Mater. Chem. C 2015, 3, 5859-5868.
(33) You, J.; Meng, L.; Song, T. B.; Guo, T. F.; Yang, Y.; Chang, W. H.; Hong, Z.; Chen, H.; Zhou, H.; Chen, Q.; Liu, Y. S.; Marco, N. D. M. Yang, Y. Improved Air Stability of Perovskite Solar Cells via Solution-Processed Metal Oxide Transport Layers. Nat. Nanotechnol. 2016, 11, 75–81.
(34) Kim, A.; Lee, H.; Kwon, H. C.; Jung, H. S.; Park, N. G.; Jeong, S.; Moon, J. Fully Solution-Processed Transparent Electrodes Based on Silver Nanowire Composites for Perovskite Solar Cells. Nanoscale 2016, 8, 6308–6316.
(35) Lu, H.; Sun, J.; Zhang, H.; Lu, S.; Choy, W. C. H. Room-Temperature Solution-Processed and Metal Oxide-Free Nano-Composite for the Fexible Transparent Bottom Electrode of Perovskite Solar Cells. Nanoscale 2016, 8, 5946–5953.
(36) Kang, S.; Kim, T.; Cho, S.; Lee, Y.; Choe, A.; Walker, B.; Ko, S. J.; Kim, J. Y.; Ko, H. Capillary Printing of Highly Aligned Silver Nanowire Transparent Electrodes for High-Performance Optoelectronic Devices. Nano Lett. 2015, 15, 7933−7942.
(37) Duan, S. K.; Niu, Q. L.; Wei, J. F.; He, J. B.; Yin Y. A.; Zhang, Y. Water-Bath Assisted Convective Assembly of Aligned Silver Nanowire Films for Transparent Electrodes. Phys. Chem. Chem. Phys. 2015, 17, 8106-8112.
(38) Dan, B.; Irvin, G. C.; Pasquali, M. Continuous and Scalable Fabrication of Transparent Conducting Carbon Nanotube Films. ACS Nano 2009, 3(4), 835–843.
(39) Park, B.; Bae, I. G.; Huh, Y. H. Aligned Silver Nanowire-Based Transparent Electrodes for Engineering Polarisation-Selective Optoelectronics. Scientific Reports 2016, 6, 19485.
(40) Ko, Y.; Song, S. K.; Kim, N. H.; Chang, S. T. Highly Transparent and Stretchable Conductors Based on a Directional Arrangement of Silver Nanowires by a Microliter-Scale Solution Process. Langmuir 2016, 32, 366−373.
(41) Jang, H.; Kim, D.; Tak, H.; Nam, J.; Kim, T. I. Ultra-mechanically Stable and Transparent Conductive Electrodes. Current Applied Physics 2016, 16, 24-30.
(42) Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R.; Sun, Y.; Xia, Y.; Yang, P. Langmuir−Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy. Nano Lett. 2003, 3(9), 1229-1233.
(43) Bang, J.; Choi, J.; Xia, F.; Kwon, S. S.; Ashraf, A.; Park, W.; Nam, S. W. Assembly and Densification of Nanowire Arrays via Shrinkage. Nano Lett. 2014, 14, 3304−3308.
(44) Maleki, M.; Reyssat, M.; Restagno, F.; Quéré, D.; Clanet, C. Landau–Levich Menisci. Journal of Colloid and Interface Science 2011, 354, 359–363.
(45) Maurer, J. H. M.; González-García, L.; Reiser, B.; Kanelidis, I.; Kraus, T. Templated Self-Assembly of Ultrathin Gold Nanowires by Nanoimprinting for Transparent Flexible Electronics. Nano Lett. 2016, 16, 2921−2925.
(46) Wang, J.; Jiu, J.; Araki, T.; Nogi, M.; Sugahara, T.; Nagao, S.; Koga, H.; He, P.; Suganuma, K. Silver Nanowire Electrodes: Conductivity Improvement Without Post-treatment and Application in Capacitive Pressure Sensors. Nano-Micro Lett. 2015, 7(1), 51–58.
(47) Langley, D. P.; Lagrange, M.; Giusti, G.; Jiménez, C.; Bréchet, Y.; Nguyen, N. D.; Bellet, D. Metallic Nanowire Networks: Effects of Thermal Annealing on Electrical Resistance. Nanoscale 2014, 6, 13535–13543.
(48) Yoo, J. H.; Kim, Y.; Han, M. K.; Choi, S.; Song, K. Y.; Chung, K. C.; Kim, J. M.; Kwak, J. Silver Nanowire−Conducting Polymer−ITO Hybrids for Flexible and Transparent Conductive Electrodes with Excellent Durability, ACS Appl. Mater. Interfaces 2015, 7, 15928−15934.
(49) Finn, D. J.; Lotya, M.; Coleman, J. N. Inkjet Printing of Silver Nanowire Networks. ACS Appl. Mater. Interfaces 2015, 7, 9254−9261.
(50) Wu, J. Multi-Length Scaled Silver Nanowire Grid for Application in Efficient Organic Solar Cells. Adv. Funct. Mater. 2016.
(51) Liang, J.; Tong, K.; Pei, Q. A Water-Based Silver-Nanowire Screen-Print Ink for the Fabrication of Stretchable Conductors and Wearable Thin-Film Transistors. Adv. Mater. 2016.
(52) An, B. W. Stretchable and Transparent Electrodes using Hybrid Structures of Graphene−Metal Nanotrough Networks with High Performances and Ultimate Uniformity. Nano Lett. 2014, 14, 6322.
(53) Chang, Y. M.; Yeh, W. Y.; Chen, P. C.; Highly Foldable Transparent Conductive Flms Composed of Silver Nanowire Junctions Prepared by Chemical Metal Reduction. Nanotechnol. 2014, 25, 285601.
(54) Leach, M. A.; McDowell, M.; Gall, K. Deformation of Top-Down and Bottom-Up Silver Nanowires. Adv. Funct. Mater. 2007, 17, 43–53.
(55) Yu, P. C.; Hong, C. C.; Liou, T .M.; Bendable Transparent Conductive Meshes Based on Multi-Layer Inkjet-Printed Silver Patterns. J. Micromech. Microeng. 2016, 26(7), 035012.
(56) Stannard, A.; Dewetting-Mediated Pattern Formation in Nanoparticle Assemblies, J. Phys.: Condens. Matter 23 2011, 19, 083001.
(57) Lu, S. Y. Formation of Nanowire Striations Driven by Marangoni Instability in Spin-Cast Polymer Thin Films. Langmuir 2007, 23, 10069-10073.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *