帳號:guest(18.191.44.122)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林政逸
作者(外文):Lin, Cheng Yi
論文名稱(中文):發展一兩列錯位式編碼之線性精密絕對位置量測系統
論文名稱(外文):Development of Two-Row Multi-Section Magnetic Patterns For Absolute Precision Measurement System
指導教授(中文):張禎元
指導教授(外文):Chang, Jen Yuan
口試委員(中文):宋震國
曹哲之
口試委員(外文):Sung, Chung Kuo
Tsao, Che Chih
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:103033604
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:76
中文關鍵詞:錯位編碼永磁磁化法量測系統
外文關鍵詞:Measuring SystemPermanent magnet for manufacturing processMagnetic patterns
相關次數:
  • 推薦推薦:0
  • 點閱點閱:697
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
  在台灣機械工業產業中,在線性位置量測系統的編碼方面,基本上磁性位置量測系統與光學位置量測系統均使用二進位碼(Binary Code),差異僅在使用基材與製作方式不同。因此,磁性位置量測系統擁有低價格、易維護等優勢,在應用上也較光學位置量測系統多元,因此本研究將選擇朝磁性位置量測系統的方向進行開發。不論式光學位置量測系統或磁性位置量測系統,利用編碼格式、感測器數量的不同,可分為增量式(Incremental)與絕對式(Absolute)位置量測系統。而本論文旨在研究一新式絕對編碼的可能性。
  本研究將主要分為兩個部分,第一為開發一方便實驗室內使用的磁寫入平台,第二為進行一種新的絕對式編碼方式。於磁寫入平台的開發方面,會從模擬軟體開始進行有限元素法的虛擬分析,藉由觀察模擬出的磁寫入強度、有效磁寫入寬度等等,討論何種磁寫入頭的設計形狀可以最符合實驗所需樣品之參數,接下來會實際將模擬所得之最佳設計參數實現出來,透過量測實際磁寫入後膠尺上的場形與場強,探討該如何改良磁頭之設計。
  完成開發此一磁寫入平台後,本研究將從感測讀頭著手,探討讀頭中磁阻陣列感測器作用的原理以及針對不同磁極寬度時的表現為何。此部分將會依據讀頭的設計尺寸以及讀頭製造商提供的參數推導出一數學模型,後續則會將讀頭實際放於磁尺上進行量測,並且與先前推導出之數學模型進行對照及交互驗證。在確立感測讀頭的理論與實際行為模式後,本文最後將提出一兩列錯位式絕對編碼之設計準則,並且在短行程的磁尺上實現此一磁極排列,驗證此種編碼方式的設計概念。
Linear position sensing systems has played a crucial role in position control and has been widely used in engineering products such as guide rails, pick-and-place robots and several other applications. Two types of linear sensing systems can be found in most products, that is, the optical encoder and the magnetic encoder. While optical sensing systems prove to have higher resolution, its accuracy and stability tends to decrease in unclean environments, where oil, dust, debris, etc. are present, these impurities could greatly affect the performance of optical sensors. The magnetic encoder holds the advantage of maintaining high precision and better performance in hazardous environments over optical encoders and is hence chosen as the main application of this research.
In this research, a new method for achieving absolute position information is proposed, a permanent magnet magnetizer for experiment is developed as well. As opposed to the common approach of matching MR sensors to specific pole pitch patterns on medium, this paper validates the possibility of mismatching between the two with fixed element spacing in MR over pole pitch variation from 1.1 to 1.3mm using two-row magnetic patterns. The 1st row is the incremental row, which has the same 1mm pole pitch as the sensor. The 2nd row serves as the absolute row with tweaked pole pitch pattern. As two rows have different pole pitches, there is an offset between each pole before the two different pole pitches reach their common multiple. By plotting the Lissajous curves from both rows, the relation between two rows on each position is unique, and hence can be used as a mean to determine absolute position.
中文摘要 I
英文摘要 III
致謝 III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 技術背景與產品現況 2
1.2.1編碼方式 2
1.2.2著磁方式 4
1.3 文獻回顧 7
1.4 動機與目的 17
1.5 研究方法 19
第二章 磁化理論 22
2.1 磁滯曲線 22
2.2 磁化過程 23
2.3 消磁場與消磁因子 24
第三章 磁阻感測器行為模擬與著磁模型建構 26
3.1 前言 26
3.2 磁阻感測器於不同極寬之行為模擬 27
3.2.1數學模型建構與磁阻感測器運作機制簡介 27
3.2.2讀頭行為模擬 30
3.3磁寫入裝置模型建構 35
3.4磁寫入裝置模擬結果與分析 37
3.4.1磁寫入裝置外型對磁寫入場強之影響 37
3.4.2磁寫入裝置外型對磁寫入場形之影響 40
3.5 本章小結 44
第四章 實驗量測 45
4.1 前言 45
4.2磁寫入平台之架設 45
4.3磁寫入裝置磁場強度與分布情形 47
4.3.1量測設備 47
4.3.2磁寫入當下之磁場強度 48
4.3.3封閉磁迴路之效果 50
4.4磁寫入過後之膠尺分析 53
4.4.1量測設備 53
4.4.2磁極寬度與場形分析程式 54
4.4.3膠尺磁場形狀分析 56
4.4.4兩列磁極定位分析 58
4.5磁阻感測器於不同極寬之判讀 62
4.5.1實驗架設 62
4.5.2量測結果 63
4.6新式絕對編碼驗證 64
4.7 本章小結 69
第五章 結論與未來展望 71
5.1 結論 71
5.2 未來展望 71
參考文獻 74

[1] http://www.tmba.org.tw/home.asp
[2]東洋磁氣工業株式會社 http://www.magnix.com/.

[3] K. Miyashita, T. Takahashi, and M. Yamanaka, “Features of a magnetic rotary

encoder,” IEEE Trans. Magn., Vol. 23, (1987) 2182 - 2184.

[4] H. Okuno, M. Ishikawa, and Y. Sakaki, “Properties of SmCo film for magnetic rotary encoder,” IEEE Trans. Magn., Vol. 23, (1987) 2425 - 2427.
[5] Y. J. Luo, E. T. Hwang, and S. M. Huang, “Multi-pole magnetization of high resolution magnetic encoder,” Proceedings of EEIC/ICWA Exposition, Chicago, USA, Oct. 4-7, (1993) 237 - 242.
[6] Y. Kikuchi, F. Nakamura, H. Wakiwaka, H. Yamada, and J. Yamamoto, “Consideration of magnetization and detection on magnetic rotary encoder using finite element method,” IEEE Trans. Magn. Vol. 33, (1997) 2159 - 2162.
[7] Y. Kikuchi, F. Nakamura, H. Wakiwaka, and H. Yamada, “Index phase output characteristics of magnetic rotary encoder using a magneto-resistive element,” IEEE Trans. Magn. Vol. 32, (1997) 3370 - 3372.
[8] Y. Kikuchi, T. Yoneda, Y. Kataoka, K. Shiotani, H. Wakiwaka, and H. Yamada, “Considerations of output voltage waveform on magnetic linear encoder for artificial heart using linear pulse motor,” Sens. Actuator A - Phys. 81, (2000) 309
- 312.
[9] 邱國基,多極磁性元件之設計與製作在高精密定位系統之應用,國立交通大 學/光電工程研究所,2006。
[10] 簡志榮,磁性編碼器充磁座之磁路模擬與分析,元智大學/電機工程研究所,
2000。
[11] 賴坤奇,磁性編碼器原型製作、測試,國立中央大學/機械工程研究所,民國
1997。
[12] 莊俊良,磁性編碼器之磁環分析與模擬,國立中央大學/機械工程研究所,
1996。
[13] 游志榮,磁性編碼器磁環充磁機原型設計、製作及測試,國立中央大學/機械 工程研究所,1995。

[14] 王心德,磁鐵充磁技術開發,馬達電子報(2007) ,第 247 期。
[15] 金重勳,磁性技術手冊,中華民國磁性技術協會,2002。

[16] David K. Cheng, Fields and Waves Electromagnetic, Addison-Wesley Publishing

Company (1994).

[17] T. Nakata and N. Takahashi, “Numerical analysis of transient magnetic field in a capacitor-discharge impulse magnetizer,” IEEE Trans. Mag. 22 (5) (1986) 526 -
528.

[18] N. Takahashi, “3D analysis of magnetization distribution magnetized by capacitor-discharge impulse magnetizer,” Journal of Materials Processing Technology, 108 (2001) 241 - 245.
[19] 廖文博,充磁能量比較 I,馬達電子報(2008),第 293 期。
[20] 廖文博,充磁能量比較 II,馬達電子報(2008),第 294 期。

[21] H. Feshki Farahani and S. M. Pedram Razi, “Analysis of effective parameters on magnetizer using finite element method,” 24th International Power System Conference, (2009).


[22] Feedback scales for NC machine tools – General Catalog, Magnescale Co. Ltd
[23] 楊善國,感測與量度工程,全華科技圖書股份有限公司出版,1994 年 10 月。

[24] R.S. Figliola and D.E. Beasley, Theory and Design for Mechanical Measurements,

4th Edition, John Wiley & Sons, Inc., New York, NY, USA, 2006.

[25] S. Tamashita, H. Kaku, and M. Ikeda, “Development of the absolute type magnetic encoder suitable for thinner structure,” IEEE Translation Journal on Magnetics in Japan, Vol. 5, No. 8, pp. 711-719, 1990.
[26] S. Hao, Y. Liu, and M. Hao, “Study on a novel absolute magnetic encoder,” Proceedings of the 2008 IEEE International Conference on Robotics and Biomimetic, pp. 1773-1776, Bangkok, Thailand, February 21-26, 2008.
[27] Y. Liu, S. Hao, and M. Hao, “A novel absolute magnetic sencoder based on pseudorandom code,” Proceedings of the 2009 IEEE International Conference on Information and Automation, pp. 385-390, Zhuhai/Macau, China, June 22-25,
2009.
[28] 江士標,賴坤奇,“轉角編碼器及磁性尺細分割電路” ,中華民國專利公告
515143,2002 年 12 月 21 日。

[29] A. Chitayat, “Linear Encoder,” United State Patent 5,907,200, May 25, 1999.

[30] S.X. Wang and A. Taratorin, Magnetic Information Storage Technology, Academic Press, San Diego, CA,USA, 1999.
[31] J.Y. Chang, “Identification and Minimization of RRO in Magnetic Hard Disk

Drives,” Journal of Recent Patents on Computer Science, Vol. 4, No. 2, pp

114-126, 2011.

[32]T. Howell, D. McCown, T. Diola, Y. Tang, K. Hense, and R. Gee, “Error rate performance of experimental Gigabit per square inch recording components,” IEEE Trans. Magn., MAG-26, p. 2298,1990.
[33] H.S. Hsiao; Z.H. Xu; T.S. Chin; C.K. Sung; S.C. Wang; Chang, J.-Y.J., “Development of a Permanent Magnet as Magnetizer for Linear Magnetic Pattern Manufacturing.” IEEE Transactions on Magnetics,Vol. 50, Issue 11, 2014
[34] D. Schödlbauer, “Method and apparatus for determining absolute position of displacement and angle sensors,” U.S. Patent 6 466 889, Oct. 15, 2002.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *