帳號:guest(3.147.44.55)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):盧冠榮
作者(外文):Lu, Kuan Jung
論文名稱(中文):介電式液態透鏡用於3D金屬雷射列印 之表面缺陷檢測
論文名稱(外文):Using Dielectric Liquid Lens to Detect Surface Defects of 3D Metal Laser Printing
指導教授(中文):葉哲良
指導教授(外文):Yhe, Jer Liang
口試委員(中文):黃國政
蔡智偉
陳馨寶
口試委員(外文):Huang, Kuo Cheng
Tsai, Chih Wei
Chen, Shin Pao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:103033594
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:99
中文關鍵詞:介電式液態透鏡金屬3D列印孔洞即時檢測
外文關鍵詞:Dielectric liquid lens3D metal printingholesreal-time detection
相關次數:
  • 推薦推薦:0
  • 點閱點閱:536
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
3D列印屬於增量(積層)製造的技術,近幾年3D列印技術的蓬勃發展且金屬材料多樣性的積極開發,金屬3D列印被廣泛應用於航太、食品、醫療與製造等產業,但列印技術的精度和缺陷皆會影響到產品的品質,因此本研究透過金屬3D列印過程的即時檢測,來即時修補列印模型的缺陷。
本論文的目標是將實驗室所開發之介電式液態透鏡作為變焦元件,應用於3D金屬雷射列印的即時檢測中,以單一鏡頭模組,來拍攝金屬3D列印的半成品樣品的孔洞,鏡頭模組以介電式液態透鏡緊貼1/5 ''的CMOS感測器與鏡頭,工作距離介於15-26 mm之間,並使用可調變的環形暗場光源,依照不同放大倍率提供相對應的光源,可拍攝出解析度約為50 μm的金屬表面影像,另外使用影像處理軟體計算孔洞面積及深度,並討論表面影像與樣品缺陷之關聯性,未來可利用多排陣列的方式,將光機系統架設在粉末推床上,利用介電式液態透鏡快速變焦之特性,在不同位置及不同焦距下進行拍攝,以建構出完整的雷射燒結金屬3D列印燒結表面狀況。
3D printing is the additive manufacturing technology. Recently, more diversity of metallic material has been actively developed and applied in the aerospace and manufacturing industry. Therein, the precision and defect will affect the quality of the printing product. Therefore, the real-time detection of metallic surface of 3D printing product was very important, and then the defect and the hole of 3D metal printing product can be repaired instantly.
This study has been devoted to dielectric liquid lens as a zoom element for real-time detection of 3D metal printing. In the experiment, a single lens module was employed to acquire the holes images of semi-finished 3D metal printing samples. Therein dielectric liquid lens closely contact to the camera lens with 1/5 '' CMOS sensor, and the working distance ranged from 15 to 26 mm. Using an adjustable dark field annular light source to provide appropriate light source in accordance with different magnifications. Metal surface image which resolution of 50 μm can be taken, and the area and depth of holes can be calculated by using image processing software and the relationship between the defects and image intensity can be built for the real-time detection. In the future, the optical systems with multiple rows arrays will be designed, and mounted in a powder bed push of 3D metal printing system. Finally, the complete surface image of the 3D metal printing product can be constructed owing to the dielectric liquid lens have the characteristics of fast zoom, shoot in different locations and different working distance.


目錄
摘要 i
Abstract ii
目錄 iii
表目錄 v
圖目錄 vi
符號表 xi
縮寫表 xiii
公式表 xiv
第一章 前言 1
1.1 研究背景 1
1.1.1 3D列印發展 1
1.1.2 金屬3D列印 1
1.1.3金屬列印之缺陷[6] 3
1.2文獻回顧 5
1.2.1 現有及開發中的金屬3D列印之檢測 5
1.2.2 光學系統之對焦技術 7
1.3研究動機與目標 11
1.4 論文架構 12
第二章 基礎理論 13
2.1 介電式液態透鏡變焦技術 13
2.1.1 驅動原理 13
2.1.2 光學特性分析 14
2.1.3立體取像理論[24] 15
2.2暗場照明[27] 17
2.3對比度[28] 17
2.4 Modulation Transfer Function (MTF)[28] 18
第三章 變焦距顯微模組設計 19
3.1 系統設計 19
3.1.1 設計流程 19
3.1.2 學理流程 20
3.1.3檢測目標及預期系統架構 21
3.1.4預期光學規格設計 22
3.2系統架構 24
3.2.1鏡頭模組規格 24
3.2.2 介電式液態透鏡規格 27
3.2.3光源設計 28
3.3實驗架設 31
3.4光學模擬 33
3.4.1 參數設定 33
3.4.2 模擬結果及討論 34
第四章 實驗結果與討論 39
4.1 量測與分析標準作業程序 39
4.2 標準片拍攝與分析 40
4.2.1 linepair實際拍攝 40
4.2.2光學畸變(distortion) 60
4.3 實物拍攝 67
4.3.1解析度( Resolution) 67
4.3.2 暗場和明場的孔洞拍攝 75
4.4 影像處理與分析 78
4.4.1 測量XY軸孔洞大小 78
4.4.2 測量Z軸孔洞深度 85
4.4.3 白光干涉儀驗證 87
4.4.4 辨別方法 93
第五章 結論 95
第六章 未來工作 97
參考文獻 98

參考文獻
[1] J. P. Kruth, M. C. Leu , T. Nakagawa, “Progress in Additive Manufacturing and Rapid Prototyping”, Volume 47, Issue 2, Pages 525-540 (1998)
[2] 3D列印材料發展現況與趨勢,吳顯東著 (2013)
[3] 原料技術發展決定3D列印未來,魏淑芳著 (2015)
[4] F. S. Shirazi, S. Gharehkhani, M. Mehrali, H. Yarmand, H. S. C. Metselaar, N. A. Kadr and N. A. A. Osman, “A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing”, Sci. Technol. Adv. Mater. 16 033502 (20pp) (2015)
[5] J. Dobransky, P. Baron, V. Simkulet, M. Kocisko, J. Ruzbarsky, E. Vojnova, “Examination of Material Manufactured by Direct Metal Laser Sintering (DMLS) ”, ISSN 0543-5846 METABK 54(3) 477-480 (2015)
[6] J. Yang, H. Ouyang, C. Xu, Y. Wang , “Top surface quality research for direct metal laser fabrication”, Rapid Prototyping Journal, Vol. 18 Iss 1 pp. 4 - 15 (2012)
[7] G. Strano, L. Hao, R. M. Everson, K. E. Evans, “Surface roughness analysis, modelling and prediction in selective laser melting”, Journal of Materials Processing Technology 213 589– 597 (2013)
[8] “Practical Scanning Electron Microscopy: Electron and Ion Microprobe Analysis”, J. Goldstein (1975)
[9] 共軛焦顯微鏡原理,科技部高瞻自然科學教學資源平台,葉柏安著 (2009)
[10] K. H. Kim, S. Y. Lee, S. K. Kim, “A mobile auto-focus actuator based on a rotary VCM with the zero holding current”, Optics Express 17, 5891-5896 (2009)
[11] S. Kuiper, and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras”, Applied Physics Letters 85, 1128 (2004).
[12] C. S. Liu, P. D. Lin, P. H. Lin, S. S. Ke, Y. H. Chang, J. B. Horng, “Design and Characterization of Miniature Auto-Focusing Voice Coil Motor Actuator for Cell Phone Camera Applications", Magnetics, IEEE Transactions 45, 155-159 (2009)
[13] K. Uchino, “Piezoelectric actuators 2006”, Journal of Electroceramics 20, 301-311 (2008)
[14] K. W. H. Tsui, N. C. Cheung, K. C. W. Yuen, “Novel Modeling and Damping Technique for Hybrid Stepper Motor”, Industrial Electronics, IEEE, 56 Issue:1, 202-211 (2009)
[15] B. H. Hendriks, S. Kuiper, M. A. J. Van, C. A. Renders, T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems”, Opt. Rev. 12, 255-259 (2005)
[16] F. Krogmann, W. Monch, H. Zappe, “A MEMS-based variable micro-lens system”, J. Opt. A: Pure Appl. Opt. 8 330–336 (2006)
[17] J. S. Patel, K. Rastani, “Electrically Controlled Polarization-Independent Liquid-Crystal Fresnel Lens Arrays”, Opt. Lett 16, 532-534 (1991)
[18] K. Viswanathan , “Surface relief structures on AZO polymer films”, Journal of Materials Chemistry 9, 1941-1955 (1999)
[19] C. C. Cheng, C. A. Chang, C. H. Liu, and J. A. Yeh, “A tunable liquid-crystal microlens with hybrid alignment”, J. Opt. A:Appl. Opt. 8, 365-369 (2006)
[20] C. C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens”, Optics Express 14, 4101-4106 (2006).
[21] C. C. Cheng, and J. A. Yeh, “Dielectrically actuated liquid lens”, Optics Express 15, 7140-7145 (2007)
[22] 介電式液態透鏡與光圈之研究,清華大學奈米工程與微系統研究所博士論文,蔡智偉著 (2010)
[23] Douglas Clark and Brian Brown, “A Rapid Image Acquisition Method for Focus Stacking in Microscopy”, Microscopy Today ,Volume 23 ,Issue 04 (2015)
[24] W. Y. Hsu , “Development of the fast astigmatic auto-focus microscope system”, Meas. Sci. Technol20,045902 (2009)
[25] K. Uchino, “Piezoelectric actuators 2006”, Journal of Electroceramics”, 20,301-311 (2008)
[26] S. M. Sohn, S. H. Yang, H. M. Park, “SoC Design of An Auto-Focus Driving Image SignalProcessor”, Consumer Electronics. ICCE 06. Digest of Technical Papers. 7-11, p.73-74 (2006)
[27] C. Bakolias, A. K. Forrest ,“Dark Field, Scheimpflug imaging for surface inspection”, Mechanical Engineering Department The Imperial College of Science Technology and Medicine (1997)
[28] 取像透鏡裝置之調變轉移函數量測系統的研討,國立臺灣師範大學碩士論文,潘世耀著 (2006)
[29] 基礎光學,虎尾科技大學多媒體教材,林依恩著 (2016)
[30] Z. Zhang, Z. Chen, J. Shi, R. Ma and F. Jia, “A Neural Network-based Machine Vision Method for Surface Roughness Measurement”, IEEE International Con ference on Mechatronics and Automation,Changchun, China (2009)
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *