帳號:guest(18.117.192.192)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林祐祥
作者(外文):Lin, You Xiang
論文名稱(中文):臥式液靜壓旋轉軸之設計與分析
論文名稱(外文):A Horizontal Hydrostatic Rotary Bearing Design and Analysis
指導教授(中文):宋震國
指導教授(外文):Sung, Cheng-Kuo
口試委員(中文):林士傑
蕭德瑛
蔡志成
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:103033581
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:127
中文關鍵詞:液靜壓臥式旋轉軸節流器剛性
外文關鍵詞:horizontal hydrostatic rotary bearingrestrictorstiffness
相關次數:
  • 推薦推薦:0
  • 點閱點閱:50
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本文設計一套高負載、低轉速且高迴轉精度之液靜壓臥式旋轉平台,藉由分析及評估實際加工情形,選擇性能表現可能為最佳之液靜壓軸承構型,透過現有設備進行實驗量測,並探討分析其相關的誤差參數。
在理論方面,首先計算液靜壓節流器中封油面之流阻值,藉由設計軸承油腔內部壓力與供給壓力之壓力比,使油膜剛性能達到最大;接著探討在液靜壓軸承系統中,使用定壓之液靜壓單向墊以及雙向墊軸承的承載力,並求出其油膜剛性表現;另外,在液靜壓軸承的設計過程中,檢索相關剛性及承載力計算之文獻,調整油膜厚度、封油面尺寸、流體黏滯係數、總流體流量等設計參數,期望能將不同文獻所計算出之數值與實驗結果進行比較分析,以利於設計時能更準確評估液靜壓軸承之性能。
於發包製作前,將現有設備平台進行性能量測與分析。藉由實驗所得到的結果探討理論運算及實際效能間的關係,依此關係檢討可能的誤差參數,並提出改進之方法以提高臥式旋轉台之性能。

關鍵字:液靜壓臥式旋轉軸、節流器、剛性
This thesis studies the design process of the hydrostatic bearing, and completes a horizontal hydrostatic rotary bearing design with high performance based on a properly structural design and with self-made capillary restrictors.
In theory, analyze the flow resistance of the pad and restrictors to design the pressure ratio between the source and the pocket, which conduces to design the bearing stiffness. Secondly, this study probes the function of the load capacity of the single pad and the opposed pad hydrostatic bearing, and the performance of stiffness. In addition, this work also searches the relevant literature about the computation of the stiffness and the load capacity to obtain the essential parameter which influences the bearing’s characteristics, such as the oil film thickness, the land dimension, the oil viscosity, the total flow. This work will compare and analyze the experimental results and the functions about different literatures to estimate the performance of the bearing accurately.
This thesis uses the existing horizontal hydrostatic bearing to do the experiment and analyze before the design contracts out. These experimental results compare the actual performance with the theoretic performance to make discussion about the probable parameter of error and present a method to improve the performance of the horizontal hydrostatic rotary bearing.

Key words: horizontal hydrostatic rotary bearing, restrictor, stiffness
摘要 2
Abstract 3
致謝 4
目錄 6
圖目錄 10
表目錄 13
符號表 14
第一章 導論 16
1-1 研究背景 16
1-2 文獻回顧 19
1-2-1 液靜壓軸承之研究 19
1-2-2 固定式節流液靜壓軸承之研究 19
1-2-3 主動式節流液靜壓軸承之研究 20
1-2-4 表面自補償節流器之研究 22
1-2-5 液靜壓軸承理論誤差修正之研究 22
1-2-6 複合式節流器之研究 23
1-3 研究動機與目的 23
第二章 理論分析 26
2-1 雷諾方程式 26
2-2 Lumped Parameter Modeling 32
2-3 液靜壓軸承承載力及油膜剛性 34
2-4 液靜壓軸承流體溫度變化 42
第三章 液靜壓軸頸式軸承及止推軸承設計比較 46
3-1 流阻網路法 46
3-1-1 封油面流阻推導 46
3-1-2 承載力效能分析 53
3-1-3 剛性效能分析 57
3-1-4 節流器設計分析 59
3-2 查表法 62
3-2-1 承載力效能分析 62
3-2-2 剛性效能分析 65
3-2-3 節流器設計分析 68
3-3 經驗法則 71
3-3-1 承載力效能分析 73
3-3-2 剛性效能分析 74
3-3-3 節流器設計分析 76
3-4 性能比較 77
第四章 液靜壓軸承結構分析 80
4-1 外型設計 80
4-2 結構設計 83
4-3 應力及形變分析 87
第五章 實驗研究 90
5-1 實驗架設 90
5-1-1 液靜壓臥式旋轉軸 91
5-1-2 供油設備系統及流體冷卻單元 92
5-1-3 量測設備 92
5-2 實驗方法及步驟 95
5-2-1 實驗方法 95
5-2-2 實驗步驟 96
5-3 實驗結果 100
5-3-1 初始位移及傾斜實驗結果 100
5-3-2 徑向剛性實驗結果 106
5-3-3 軸向剛性實驗結果 115
第六章 結論與未來工作 122
6-1 結論 122
6-2 未來工作 123
參考文獻 125
[1] Girard, L.D., 1862, “Application des Surfaces Glissantes, ” , Paris.
[2] 王寶沛、翟鵬等,液體靜壓軸承動態特性的探討,液壓與氣動,2007年第8期
[3] Raimondi, A. A., Boyd, J., 1957, “An Analysis of Orifice and Capillary Compensated Hydrostatic Journal Bearing,” Lubr. Eng. 13(1):28-37.
[4] Mori H. and Yabe H. “A theoretical investigation on hydrostatic bearing,” Bull. JSME Vol. 6, N0.22, p.354-363, 1963.
[5] EI-Sherbiny M., Salam F., EI-Hefnawy N., “Optimum design of hydrostatic journal bearing: II. Minimum power.” Trib. Int. 1984;17(3):162-166.
[6] Stanley, B.M., and Alfred, M.L., “The Effect of the Method of Compensation on Hydrostatic Bearing Stiffness,” Journal of Basic Engineering, p.179-187, 1961.
[7] Ling, T. S., “On the optimization of the stiffness of externally pressurized bearings.” Trans. ASME. J. Basic Eng. 1962; 84:119-122.
[8] O’Donoghue, J. P., “Parallel orifice and capillary control for hydrostatic journal bearings.” Tribology 1972;5:81-82.
[9] S. C. Sharma, S. C. Jain, R. Sinhasan and R. Shalia, “Comparative study of the performance of six-pocket and four-pocket hydrostatic-hybrid flexible journal bearings,” Tribology International Vol. 28, 1995, pp. 531-539.
[10] S. C. Sharma, R. Sinhasan, S. C. Jain, N. Singh and S. K. Singh, “Performance of hydrostatic/hybrid journal bearings with unconventional recess geometries,” Tribology Transactions, Vol.41, 1998, pp.375 – 381.
[11] Mohsin, M.E., “The Use of Controlled Restrictors for Compensating Hydrostatic Bearing,” Third International Conference on Machine Tool Design Research, p.129-424,1962
[12] Mayer, J. E. and Shaw, M. C., “Characteristics of Externally Pressurized Bearing Having Variable External Flow Restrictors,” ASEM Journal of Basic Engineering, Vol. 85, p.291-, 1963.
[13] Rowe, W. B. and O’Donoghue, J.P., “Diaphragm Valves for Controlling Opposed Pad Hydrostatic Bearing,” Proc. I. E. Tribology, 1970.
[14] W. B. Rowe, “Hydrostatic and hybrid bearing design”, 1983, Butterworths pressed.
[15] Moris, S. A. “Passively and Actively Controlled Externally Pressurized Oil-film Bearing, ” Trans. ASME, Ser. F, Vol. 94, 1972.
[16] N. Tully, “Static and Dynamic Performance of an Infinite Stiffness Hydrostatic Thrust Bearing,” Trans. of ASME, 1977.
[17] Pande, S. S., Somasundaram S., “Analysis of a four-pocket hydrostatic journal bearing with a position-sensing variable restrictor.” Wear 1979; 54:331-341.
[18] Osumi T., Mori H., Ikeuchi K., “Effects of stabilizer on initial response of self controlled externally pressurized bearings.” Trans. JSLE 1985;20:651-657.
[19] Yoshimoto S., Anno Y., Amari K., “Static characteristics of hydrostatic journal bearing with a self controlled restrictor employing floating disk.” Trans. JSLE, 1990;56:3360-3367.
[20] Yoshimoto S., Kikuchi K., “Step response characteristics of hydrostatic journal bearings with self-controlled restrictor employing floating disk.” Trans. Int., 1999;121(4):315-320.
[21] Robert Schoenfold, “Regulator for adjusting the fluid flow in a hydrostatic or aerostatic device.” US Patent number 6276491B1, 2001.
[22] N. Singh, S. C. Sharma, S. C. Jain and S. S. Reddy, “Performance of membrane compensated multirecess hydrostatic hybrid flexible journal bearing system considering various recess shapes,” Tribology International, Vol. 37, 2004, pp.11-24.
[23] Kotilainen M. S., Slocum A. H., “Manufacturing of cast monolithic hydrostatic journal bearings.” Precision Eng. 2001;25:235-244.
[24] N.R. Kane, J. Sihler and A.H. Slocum, “A hydrostatic rotary bearing with angled surface self-compensation,” Prec. Eng. 27, 2003, pp. 125–139.
[25] Ghosh, B., 1972, “An Exact Analysis of a Hydrostatic Journal Bearing with a Large Circumferential Sill,” Wear Vol. 21, No.2, pp.367-375
[26] Ghosh, B., 1973, “Load and Floe Characteristic of Capillary-compensated Hydrostatic Journal Bearing, ” Wear. Vol. 23, No.3, pp.377-386.
[27] N.R. Kane, J. Sihler and A.H. Slocum, 2003, “A Hydrostatic Rotary Bearing with Angled Surface Self-compensation,” Prec. Eng. 27, pp. 125–139.
[28] Robert Schoenfeld. Flow-rate regulator for liquid and/ or gaseous materials. D.E. Patent No. 3150117 A1(1983).
[29] W. Brian Rowe Dsc, FlMechE, “Hydrostatic, Aerostatic, and Hybrid Bearing Design”, 2012, ELSEVIER pressed.
[30] 鍾洪、張冠坤,液體靜壓動靜壓軸承設計使用手冊,2007年, 電子工業出版社出版
[31] Alexander H. Slocum, “Precision Machine Design”, 1992, Society of Manufacturing Engineers pressed
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *