|
[1] Riccardi, C. C. and Williams, R. J. J., 1986, “A kinetic scheme for an amine-epoxy reaction with simultaneous etherification,” Journal of Applied Polymer Science, 32(2), pp. 3445-3456. [2] 王國書, 2007, “奈米碳管/高分子預浸材積層板複合材料之機械與電性質研究,” 國立清華大學動力機械工程學系碩士論文. [3] 馬振基主編, “高分子複合材料 上冊” 國立編譯館出版,1995. [4] 游俊盟,2005, “馬來醯胺- 氧代氮代苯并環已烷之合成、聚合及硬化樹脂研究,”私立中原大學化學工程學系碩士論文. [5] Holly, F. W. and Cope, A. C., 1944, “Condensation Products of Aldehydes and Ketones with o-Aminobenzyl Alcohol and o-Hydroxybenzylamine,” Journal of the American Chemical Society, 66(11), pp. 1875-1879. [6] Ning, X. and Ishida, H., 1994, “Phenolic materials via ring-opening polymerization: Synthesis and characterization of bisphenol-A based benzoxazines and their polymers,” Journal of Polymer Science Part A: Polymer Chemistry, 32(6), pp. 1121-1129. [7] Ishida, H. and Rodriguez, Y., 1995, “Curing kinetics of a new benzoxazine-based phenolic resin by differential scanning calorimetry,” Polymer, 36(16), pp. 3151-3158. [8] Roger, T., Robert, K. and Tim, T., “Polybenzoxazine: New Chemistry” Huntsmen Co. [9] Shen, S. B. and Ishida, H., 1996, “Development and characterization of high-performance polybenzoxazine composites,” Polymer Composites, 17(5), pp. 710-719. [10] Wang, Z. Y. and Wang, Y. G., 2009, “Property of carbon fiber reinforced polybenzoxazine composites,” Mater. Eng. Suppl., pp. 461–462. [11] 成會明,奈米碳管,初版,五南出版社,2004. [12] X. E. E. Reynhout et al., The Wondrous World of Carbon Nanotubes, Eindhoven University of Technology, 2003. [13] Zhu, J., Kim, J. D., Peng, H., Margrave, J. L., Khabashesku, V. N. and Barrera, E. V., Nano Lett 2003;3, 1107. [14] Liao, S. H., Hsiao, M. C., Yen, C. Y., MA, C. C. M., Lee, S. J., Tsai, M. C., Yen, M. Y. and Liu, P. L., J. P. Sources. 2009. [15] Cai, D. and Song, M., 2010, “Recent advance in functionalized grapheme/polymer nanocomposites,” Journal of Materials Chemistry, vol. 20, pp. 7906-7915. [16] Prolongo, S. G., Gude, M. R. and Urena, A., 2011, “Improving the flexural and thermomechanical properties of amino-functionalized carbon nanotube/epoxy composites by using a pre-curing treatment,” Composites Science and Technology, vol. 71, pp. 765-771. [17] Ghozatloo, A., Shariaty-Niasar, M., Rashidi, A. M., 2013, “Preparation of nanofluids from functionalized Graphene by new alkaline method and study on the thermal conductivity and stability,” International Communications in Heat and Mass Transfer, vol. 42, pp. 89-94. [18] He, Z., Zhang, B., Zhang, H. B., Zhi, X., Hu, Q., Gui, C. X. and Yu, Z. Z., 2014, “Improved rheological and electrical properties of grapheme/polystyrene nanocomposites modified with styrene maleic anhydride copolymer,” Composites Science and Technology, vol. 102, pp. 176-182. [19] Tseng, C. H., Wang, C. C. and Chen, C. Y., 2007, “Functionalizing Carbon Nanotubes by Plasma Modification for the Preparation of Covalent-Integrated Epoxy Composites,” vol 19 (2), pp 308-315. [20] Kim, J. A., Seong, D. G., Kang, T. J., Youn, J. R., 2006, “Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites.” [21] Mathur, R. B., Chatterjee, S., Singh, B. P., “Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties.” 2008 composites Science and Technology page 1608-1615. [22] Xu, R. W., Zhang, P. L., Wang, J. and Yu, D. S., “Polybenzoxazine-CNT Nanocomposites,” Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing, China [23] 陳眉秀, 2012, “石墨烯微片/環氧樹脂預浸材對碳纖維補強複合材料之機械性質與拉伸疲勞暨溫濕老化影響效應之研究,” 國立清華大學動力機械工程學系碩士論文. [24] Qiu, J., and Wang, S., “Enhancing polymer performance through grapheme sheets,” Journal of Applied Polymer Science, vol. 119, pp. 3670-3674, 2011. [25] Tsantzalis, S., Karapappas, P., Vavouliotis, A., Tsotra, P., Kostopoulos, V., Tanimoto, T. and Friedrich, K., “On the improvement of toughness of CFRPs with resin doped with CNF and PZT particles.” Composites: Part A, vol. 38, pp. 1159-1162, 2007. [26] Coleman, J. N., Khan, U. and Gunko, Y. K., 2006, “Mechanical Reinforcement of Polymers Using Carbon Nanotubes,” Advanced Materials, 18(6), pp. 689-706. [27] Bortz, D. R., Merino, C. and Martin-Gullon I., 2011, “Mechanical characterization of hierarchical carbon fiber/nanofiber composite laminates,” Composites Part A: Applied Science and Manufacturing, vol. 42(11), pp.1584-1591. [28] Zeng, Y., Liu, H. Y., Mai, Y. W. and Du, X. S., 2012, “Improving interlaminar fracture toughness of carbon fibre/epoxy laminates by incorporation of nano-particles,” Composites Part B: Engineering, 43(1), pp. 90-94. [29] Hahn, H. T. and Kim, R. Y., 1975, “Proof Testing of Composite Materials,” Journal of Composite Materials, vol. 9, pp. 297-311. [30] Reifsnider, K. L., Henneke, E. G., Stinchcomb, W. W. and Duke, J. C., “Damage Mechanicas and NDE of Composite Laminates,” Mechanics of Composite Materials, Pergamon Press, pp.399-420, 1983. [31] Arris, B., Reiter, H., Adam, T., Dickson, R. F. and Fernando, G., 1990, “Fatigue behaviour of carbon fibre reinforced plastics,” Composites, 21(3), pp. 232-242. [32] Paris, P. and Erdogan, F., 1963, “A Critical Analysis of Crack Propagation Laws,” Journal of Fluids Engineering, 85(4), pp. 528-533. [33] Hahn, H. T. and Kim, R. Y., 1976, “Fatigue Behavior of Composite Laminate,” Journal of Composite Materials, 10(2), pp. 156-180. [34] Whitney, J. M., 1981, “Fatigue Characterization of Composite Materials,” Fatigue of Fibrous Composite Materials, ASTM STP 723, American Society for Testing and Materials, pp.133-151. [35] Hwang, W. and Han, K. S., 1986, “Fatigue of Composites—Fatigue Modulus Concept and Life Prediction,” Journal of Composite Materials, 20(2), pp. 154-165. [36] 馬振基主編, 2012, “奈米材料科技原理與應用” 第二版,全華出版社. [37] 林錕松, 2013, “塗料性能及配方改進之研究做為商業的配方決定的運用,” 私立元智大學化學工程與材料科學學系碩士論文. [38] 陳俊龍, “AES/ESCA表面分析技術於工業材料上的應用,” 工業材料106期, 1995年. [39] ASTM D638-10, “Standard Test Method for Tensile Properties of Plastics,” Annual Book of ASTM Standards, 2010. [40] ASTM D3039/D3039M-14, “Standard Test Method forTensile Properties of Polymer Matrix Composite Materials,” Annual Book of ASTM Standards, 2014. [41] ASTM D790-10, “Flexural Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials,” Annual Book of ASTM Standards, 2010. [42] ASTM D256-10, “Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics,” Annual Book of ASTM Standards, 2010. [43] ASTM D7136/D7136M-12, “Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event,” Annual Book of ASTM Standards, 2012. [44] ASTM D2344/D2344M-00, “Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates,” Annual Book of ASTM Standards, 2006. [45] ASTM D3479/D3479M-06, “Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composite Materials,” 2007. [46] ASTM E739-91, “Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (ε-N) Fatigue Data,” 2004. [47] Andrea C. F., 2007, “Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects,” Solid state communications, 143, pp. 47-57. [48] Luis C. O. Silva and Glaura G. Silva, “Long-term behavior of epoxy/graphene-based composites determined by dynamic mechanical analysis,” J mater Sci (2015), 50:6407-6419. [49] Zaman, I. and Phan, T. T., “Epoxy/graphene platelets nanocomposites with two levels of interface strength,” Polymer 52(2011), pp. 1603-1611. [50] Beamson, G. and Briggs, D., “High Resolution XPS of Organic Polymer: The Scienta ESCA300 Database,” ACS Publications. [51] Dirk, M. S. and Martin, N, “Carbon Nanotubes and Related Structures,” Synthesis, Characterization, Functionalization, and Applications., Wiley-Vch, pp. 135, Chapter 6 “Covalent Functionalization of Carbon nanotubes.” [52] 林彥銘, 2013, “改質石墨稀微片/多壁奈米碳管/纖維積層板複合材料機械性質暨扭轉疲勞之研究,” 國立清華大學動力機械工程學系碩士論文. [53] 李育誠, 2014, “石墨稀/氧代氮代苯并環己烷/環氧樹脂碳纖維積層板複合材料機械性質與疲勞特性之研究,” 國立清華大學動力機械工程學系碩士論文. [54] 林秀臨, 2015, “多壁奈米碳管/石墨稀微片/氧代氮代苯并環己烷/環氧樹脂碳纖維積層板複合材料機械性質暨疲勞壽命之研究,” 國立清華大學動力機械工程學系碩士論文. [55] 劉家秀, 2015, “應用改質石墨稀補強高分子纖維積層複合材料機械性質與疲勞行為之研究,” 國立清華大學動力機械工程學系碩士論文. [56] Ronald, F. G., “Principles of Composite Material Mechanics.” [57] Soden, P. D., Kaddour, A. S., Hinton, M. J., “Recommendations for designers and researchers resulting from the world-wide failure exercise,” Composites Science and Technology, 63(3-4), pp. 589-604. [58] Hinton, M. J., Kaddour, A. S., Soden, P. D., “Evaluation of failure prediction in composite laminates: background to ‘part B’ of the exercise,” Composites Science and Technology, 62(12-13), pp. 1481-1488. [59] Christensen, R. M., “Stress based yield/failure criteria for fiber composites,” International Journal of Solids and Structures, 34(5), pp. 529-543. [60] Bogetti, T. A., Hoppel, C. P. R., Harik, V. M., Newill, J. F., Burns, B. P., “Predicting the nonlinear response and failure of composite laminates: correlation with experimental results,” Composite Science and Technology, 64(3-4), pp. 477-485.
|