帳號:guest(18.224.43.50)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):江浩
作者(外文):Chiang, Hao
論文名稱(中文):奈米碳管接枝4, 4-二異氰酸二苯甲烷/碳纖維/共聚物高分子之機械性質暨疲勞行為
論文名稱(外文):Investigation of Mechanical Properties and Fatigue Behavior of 4, 4’-Methylenediphenyl diisocyanate grafted Carbon Nanotubes / Copolymer / Carbon Fiber Reinforced Laminated Composite
指導教授(中文):蔡宏營
指導教授(外文):Tsai, Hung Yin
口試委員(中文):葉銘泉
葉維磬
口試委員(外文):Yip, Ming Chuen
Yeh, Wei Ching
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:103033566
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:111
中文關鍵詞:改質奈米碳管環氧樹脂氧代氮代苯并還己烷碳纖維機械性質疲勞行為複合材料
外文關鍵詞:Chemical modified carbon nanotubesEpoxyBenzoxazineCarbon fiberMechanical propertiesFatigue behaviorComposite
相關次數:
  • 推薦推薦:0
  • 點閱點閱:395
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
  近年來,由於工業與學術的進步,使得複合材料的應用層面與取向日益廣泛,它從工業的基石深入民生用品與交通運輸,故其材料機械性質及疲勞行為之應用門檻也隨之提升。因此本研究擬將氧代氮代苯并環己烷 (Benzoxazine) /環氧樹脂之共聚物做為高分子基材主體,並於高分子基材中添加奈米碳管 (Carbon Nanotubes) 作為奈米補強材,達到橋接纖維與基材介面與提升其機械性質及疲勞行為之目的。
  首先探討奈米碳管於高分子基材中之分散性及界面特性,欲先利用硝酸對奈米碳管進行氧化,提升奈米碳管之表面活性,再利用化學共價鍵改質法將4, 4-二異氰酸二苯甲烷接枝於奈米碳管表面,增加異相材料之間之相容性,進而提升其界面強度,並研究應用於碳纖維高分子複合材料之機械性質暨疲勞行為。
  改質奈米碳管之化學鑑定可藉由拉曼光譜分析、霍式紅外線光譜分析、高解析電子能譜儀分析及熱重損失之結果得到證明。由動態熱機械分析結果顯示,添加改質奈米碳管可以更有效的提升玻璃轉換溫度及材料內部之交聯密度。
  由靜態機械性質測試及動態扭轉疲勞測試之結果顯示,添加改質奈米碳管相較於添加未改質奈米碳管,可以更有效抑制纖維脫層及裂紋增長,並提升各項機械性質之強度及動態疲勞之壽命。
  In recent years, due to rapid growth of industrial and academic development, carbon reinforced polymer composite has been paid much attention and further applied to a wide variety of fields from industrial applications to daily necessities. This study is going to choose benzoxazine/epoxy copolymer as the matrix of composite in which carbon nanotubes is added to bridge the matrix and fiber in order to achieve the goal of improvement in mechanical properties and fatigue behavior.
  To enhance the ability of dispersion and interfacial property of carbon nanotubes in the matrix, carbon nanotubes will be firstly treated by nitric acid, which is to increase the surface reactivity. Carbon nanotubes are then chemically modified by 4, 4’-Methylenediphenyl diisocyanate (MDI) so as to improve the compatibility among different phases of materials. In the end of this study, mechanical properties and fatigue behavior will be clearly discussed.
  Success of chemical modification of carbon nanotubes can be proved by a series of chemical identifications such as Raman spectrum, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Thermogravimetric analysis (TGA) and so on. Additionally, the result of Dynamic mechanical analysis (DMA) also shows that glass transition temperature of modified carbon nanotubes based polymer composite increases by about 12 degrees and that the increasing cross-linking density significantly improves the mechanical properties compared with pure polymer matrix.
  Last but not least, the results of static mechanical properties and dynamic fatigue behavior are investigated and revealed great improvement by adding chemical modified carbon nanotubes, which are able to keep carbon fiber laminates from delaminating so easily and effectively lengthen the fatigue life of carbon fibrous composite.
目錄 I
表目錄 V
圖目錄 VII
符號表 XII
第一章、 緒論 1
1.1 前言 1
1.2 研究動機 3
1.3 研究目的 5
第二章、 文獻回顧 7
2.1 環氧樹脂 (Epoxy) 7
2.2 氧代氮代苯并環己烷 (Benzoxazine) 8
2.3 奈米碳管 9
2.4 改質奈米碳管 10
2.5 高分子複合材料 11
2.6 奈米碳材/高分子複合材料 12
2.7 碳纖維 13
2.8 材料疲勞損傷機制 15
2.8.1 複合材料疲勞破壞性質 15
2.8.2 應力 (Stress) 與疲勞壽命曲線 (S-N curve) 16
第三章、 實驗內容與方法 18
3.1 實驗材料與改質試劑 18
3.1.1 實驗材料 18
3.1.2 改質試劑 20
3.2 實驗設備與儀器 21
3.2.1 製程設備 21
3.2.2 測試儀器 23
3.3 實驗試片製備流程 26
3.3.1 氧化奈米碳管之製備 26
3.3.2 改質奈米碳管之製備 26
3.3.3 Benzoxazine/環氧樹脂高分子複合材料製備 27
3.3.4 改質與未改質奈米碳管/Benzoxazine/環氧樹脂奈米複合材料製備 28
3.3.5 奈米碳管/Benzoxazine/環氧樹脂/碳纖維積層板複合材料試片製備 28
3.4 實驗測試方法 29
3.4.1 奈米材料鑑定方法 29
3.4.2 試驗方法與規範 30
第四章、 實驗結果與討論 34
4.1 材料鑑定分析 34
4.1.1 拉曼光譜分析 34
4.1.2 霍式紅外線光譜分析 34
4.1.3 高解析電子能譜儀分析 35
4.1.4 熱種損失分析 36
4.1.5 動態熱機械分析 37
4.1.6 未改質與改質奈米碳管之掃描式電子顯微鏡形象學分析 38
4.2 高分子複合材料機械性質分析 39
4.2.1 高分子基材機械性質分析與選用 39
4.2.2 未改質與改質多壁奈米碳管對高分子複合材料機械性質分析 40
4.3 碳纖維積層板複合材料機械性質分析 45
4.3.1 未改質與改質多壁奈米碳管對碳纖維積層板複合材料靜態機械性質分析 45
4.3.2 未改質與改質多壁奈米碳管對碳纖維積層板複合材料動態扭轉疲勞分析 49
第五章、 結論 52
第六章、 未來工作 54
參考文獻 55
附表 62
附圖 69
[1] Riccardi, C. C. and Williams, R. J. J., 1986, “A kinetic scheme for an amine-epoxy reaction with simultaneous etherification,” Journal of Applied Polymer Science, 32(2), pp. 3445-3456.
[2] 王國書, 2007, “奈米碳管/高分子預浸材積層板複合材料之機械與電性質研究,” 國立清華大學動力機械工程學系碩士論文.
[3] 馬振基主編, “高分子複合材料 上冊” 國立編譯館出版,1995.
[4] 游俊盟,2005, “馬來醯胺- 氧代氮代苯并環已烷之合成、聚合及硬化樹脂研究,”私立中原大學化學工程學系碩士論文.
[5] Holly, F. W. and Cope, A. C., 1944, “Condensation Products of Aldehydes and Ketones with o-Aminobenzyl Alcohol and o-Hydroxybenzylamine,” Journal of the American Chemical Society, 66(11), pp. 1875-1879.
[6] Ning, X. and Ishida, H., 1994, “Phenolic materials via ring-opening polymerization: Synthesis and characterization of bisphenol-A based benzoxazines and their polymers,” Journal of Polymer Science Part A: Polymer Chemistry, 32(6), pp. 1121-1129.
[7] Ishida, H. and Rodriguez, Y., 1995, “Curing kinetics of a new benzoxazine-based phenolic resin by differential scanning calorimetry,” Polymer, 36(16), pp. 3151-3158.
[8] Roger, T., Robert, K. and Tim, T., “Polybenzoxazine: New Chemistry” Huntsmen Co.
[9] Shen, S. B. and Ishida, H., 1996, “Development and characterization of high-performance polybenzoxazine composites,” Polymer Composites, 17(5), pp. 710-719.
[10] Wang, Z. Y. and Wang, Y. G., 2009, “Property of carbon fiber reinforced polybenzoxazine composites,” Mater. Eng. Suppl., pp. 461–462.
[11] 成會明,奈米碳管,初版,五南出版社,2004.
[12] X. E. E. Reynhout et al., The Wondrous World of Carbon Nanotubes, Eindhoven University of Technology, 2003.
[13] Zhu, J., Kim, J. D., Peng, H., Margrave, J. L., Khabashesku, V. N. and Barrera, E. V., Nano Lett 2003;3, 1107.
[14] Liao, S. H., Hsiao, M. C., Yen, C. Y., MA, C. C. M., Lee, S. J., Tsai, M. C., Yen, M. Y. and Liu, P. L., J. P. Sources. 2009.
[15] Cai, D. and Song, M., 2010, “Recent advance in functionalized grapheme/polymer nanocomposites,” Journal of Materials Chemistry, vol. 20, pp. 7906-7915.
[16] Prolongo, S. G., Gude, M. R. and Urena, A., 2011, “Improving the flexural and thermomechanical properties of amino-functionalized carbon nanotube/epoxy composites by using a pre-curing treatment,” Composites Science and Technology, vol. 71, pp. 765-771.
[17] Ghozatloo, A., Shariaty-Niasar, M., Rashidi, A. M., 2013, “Preparation of nanofluids from functionalized Graphene by new alkaline method and study on the thermal conductivity and stability,” International Communications in Heat and Mass Transfer, vol. 42, pp. 89-94.
[18] He, Z., Zhang, B., Zhang, H. B., Zhi, X., Hu, Q., Gui, C. X. and Yu, Z. Z., 2014, “Improved rheological and electrical properties of grapheme/polystyrene nanocomposites modified with styrene maleic anhydride copolymer,” Composites Science and Technology, vol. 102, pp. 176-182.
[19] Tseng, C. H., Wang, C. C. and Chen, C. Y., 2007, “Functionalizing Carbon Nanotubes by Plasma Modification for the Preparation of Covalent-Integrated Epoxy Composites,” vol 19 (2), pp 308-315.
[20] Kim, J. A., Seong, D. G., Kang, T. J., Youn, J. R., 2006, “Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites.”
[21] Mathur, R. B., Chatterjee, S., Singh, B. P., “Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties.” 2008 composites Science and Technology page 1608-1615.
[22] Xu, R. W., Zhang, P. L., Wang, J. and Yu, D. S., “Polybenzoxazine-CNT Nanocomposites,” Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing, China
[23] 陳眉秀, 2012, “石墨烯微片/環氧樹脂預浸材對碳纖維補強複合材料之機械性質與拉伸疲勞暨溫濕老化影響效應之研究,” 國立清華大學動力機械工程學系碩士論文.
[24] Qiu, J., and Wang, S., “Enhancing polymer performance through grapheme sheets,” Journal of Applied Polymer Science, vol. 119, pp. 3670-3674, 2011.
[25] Tsantzalis, S., Karapappas, P., Vavouliotis, A., Tsotra, P., Kostopoulos, V., Tanimoto, T. and Friedrich, K., “On the improvement of toughness of CFRPs with resin doped with CNF and PZT particles.” Composites: Part A, vol. 38, pp. 1159-1162, 2007.
[26] Coleman, J. N., Khan, U. and Gunko, Y. K., 2006, “Mechanical Reinforcement of Polymers Using Carbon Nanotubes,” Advanced Materials, 18(6), pp. 689-706.
[27] Bortz, D. R., Merino, C. and Martin-Gullon I., 2011, “Mechanical characterization of hierarchical carbon fiber/nanofiber composite laminates,” Composites Part A: Applied Science and Manufacturing, vol. 42(11), pp.1584-1591.
[28] Zeng, Y., Liu, H. Y., Mai, Y. W. and Du, X. S., 2012, “Improving interlaminar fracture toughness of carbon fibre/epoxy laminates by incorporation of nano-particles,” Composites Part B: Engineering, 43(1), pp. 90-94.
[29] Hahn, H. T. and Kim, R. Y., 1975, “Proof Testing of Composite Materials,” Journal of Composite Materials, vol. 9, pp. 297-311.
[30] Reifsnider, K. L., Henneke, E. G., Stinchcomb, W. W. and Duke, J. C., “Damage Mechanicas and NDE of Composite Laminates,” Mechanics of Composite Materials, Pergamon Press, pp.399-420, 1983.
[31] Arris, B., Reiter, H., Adam, T., Dickson, R. F. and Fernando, G., 1990, “Fatigue behaviour of carbon fibre reinforced plastics,” Composites, 21(3), pp. 232-242.
[32] Paris, P. and Erdogan, F., 1963, “A Critical Analysis of Crack Propagation Laws,” Journal of Fluids Engineering, 85(4), pp. 528-533.
[33] Hahn, H. T. and Kim, R. Y., 1976, “Fatigue Behavior of Composite Laminate,” Journal of Composite Materials, 10(2), pp. 156-180.
[34] Whitney, J. M., 1981, “Fatigue Characterization of Composite Materials,” Fatigue of Fibrous Composite Materials, ASTM STP 723, American Society for Testing and Materials, pp.133-151.
[35] Hwang, W. and Han, K. S., 1986, “Fatigue of Composites—Fatigue Modulus Concept and Life Prediction,” Journal of Composite Materials, 20(2), pp. 154-165.
[36] 馬振基主編, 2012, “奈米材料科技原理與應用” 第二版,全華出版社.
[37] 林錕松, 2013, “塗料性能及配方改進之研究做為商業的配方決定的運用,” 私立元智大學化學工程與材料科學學系碩士論文.
[38] 陳俊龍, “AES/ESCA表面分析技術於工業材料上的應用,” 工業材料106期, 1995年.
[39] ASTM D638-10, “Standard Test Method for Tensile Properties of Plastics,” Annual Book of ASTM Standards, 2010.
[40] ASTM D3039/D3039M-14, “Standard Test Method forTensile Properties of Polymer Matrix Composite Materials,” Annual Book of ASTM Standards, 2014.
[41] ASTM D790-10, “Flexural Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials,” Annual Book of ASTM Standards, 2010.
[42] ASTM D256-10, “Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics,” Annual Book of ASTM Standards, 2010.
[43] ASTM D7136/D7136M-12, “Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event,” Annual Book of ASTM Standards, 2012.
[44] ASTM D2344/D2344M-00, “Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates,” Annual Book of ASTM Standards, 2006.
[45] ASTM D3479/D3479M-06, “Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composite Materials,” 2007.
[46] ASTM E739-91, “Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (ε-N) Fatigue Data,” 2004.
[47] Andrea C. F., 2007, “Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects,” Solid state communications, 143, pp. 47-57.
[48] Luis C. O. Silva and Glaura G. Silva, “Long-term behavior of epoxy/graphene-based composites determined by dynamic mechanical analysis,” J mater Sci (2015), 50:6407-6419.
[49] Zaman, I. and Phan, T. T., “Epoxy/graphene platelets nanocomposites with two levels of interface strength,” Polymer 52(2011), pp. 1603-1611.
[50] Beamson, G. and Briggs, D., “High Resolution XPS of Organic Polymer: The Scienta ESCA300 Database,” ACS Publications.
[51] Dirk, M. S. and Martin, N, “Carbon Nanotubes and Related Structures,” Synthesis, Characterization, Functionalization, and Applications., Wiley-Vch, pp. 135, Chapter 6 “Covalent Functionalization of Carbon nanotubes.”
[52] 林彥銘, 2013, “改質石墨稀微片/多壁奈米碳管/纖維積層板複合材料機械性質暨扭轉疲勞之研究,” 國立清華大學動力機械工程學系碩士論文.
[53] 李育誠, 2014, “石墨稀/氧代氮代苯并環己烷/環氧樹脂碳纖維積層板複合材料機械性質與疲勞特性之研究,” 國立清華大學動力機械工程學系碩士論文.
[54] 林秀臨, 2015, “多壁奈米碳管/石墨稀微片/氧代氮代苯并環己烷/環氧樹脂碳纖維積層板複合材料機械性質暨疲勞壽命之研究,” 國立清華大學動力機械工程學系碩士論文.
[55] 劉家秀, 2015, “應用改質石墨稀補強高分子纖維積層複合材料機械性質與疲勞行為之研究,” 國立清華大學動力機械工程學系碩士論文.
[56] Ronald, F. G., “Principles of Composite Material Mechanics.”
[57] Soden, P. D., Kaddour, A. S., Hinton, M. J., “Recommendations for designers and researchers resulting from the world-wide failure exercise,” Composites Science and Technology, 63(3-4), pp. 589-604.
[58] Hinton, M. J., Kaddour, A. S., Soden, P. D., “Evaluation of failure prediction in composite laminates: background to ‘part B’ of the exercise,” Composites Science and Technology, 62(12-13), pp. 1481-1488.
[59] Christensen, R. M., “Stress based yield/failure criteria for fiber composites,” International Journal of Solids and Structures, 34(5), pp. 529-543.
[60] Bogetti, T. A., Hoppel, C. P. R., Harik, V. M., Newill, J. F., Burns, B. P., “Predicting the nonlinear response and failure of composite laminates: correlation with experimental results,” Composite Science and Technology, 64(3-4), pp. 477-485.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *