帳號:guest(13.58.139.55)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許宸豪
作者(外文):Hsu, Chen Hao
論文名稱(中文):奈米銀線/石墨烯之複材製備、熱電性質暨機械性質之研究
論文名稱(外文):The investigations of preparing, thermal, electrical, and mechanical properties of silver nanowires/graphene nanocomposites
指導教授(中文):蔡宏營
指導教授(外文):Tsai, Hung Yin
口試委員(中文):葉銘泉
葉維磬
口試委員(外文):Yip, Ming Chuen
Yeh, Wei Ching
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:103033562
出版年(民國):105
畢業學年度:104
語文別:中文英文
論文頁數:102
中文關鍵詞:奈米銀線Benzoxazine 樹脂石墨烯複合材料聲子機械性質疲勞
外文關鍵詞:Silver nanowireBenzoxazineGrapheneNanocompositeMechanical propertiesFatiguePhonon
相關次數:
  • 推薦推薦:0
  • 點閱點閱:370
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本篇研究是透過製備奈米銀線(Silver nanowires)混參Benzoxazine與環氧樹脂(Epoxy)製成之複材薄膜,研究其電熱特性與機械性質之研究。研究首先以多元醇(polyol)還原法製備奈米銀線,透過乙二醇為還原劑,並加入PVP軟模板,還原銀離子,並成長為奈米銀線(Silver nanowires)。
透過高長徑比的奈米銀線(aspect ratio)混參至高分子基材中,使奈米銀線形成導電與導熱的路徑,以提高奈米複合材料的電熱特性。並將奈米銀線與石墨烯0.75 wt%之混合,使奈米複合材料與奈米銀線具有較佳之熱穩定性,並提升奈米複合材料之電熱性質,降低奈米銀線之氧化程度;由於Benzoxazine之優異的阻水阻氣之性質,於熱氧化製程下,亦可提升奈米複合材料之熱穩定性。當材料間之介面發生模數mismatch之現象,對於聲子於材料內部之傳遞,產生較大之阻礙,較易發生聲子散射現象,對於導熱性質,具有負面效果。
將奈米銀線塗浸(dip-coating)於碳纖維,並製備成積層板複合材料。塗浸奈米銀線,加劇積層板複合材料之脫層現象,塗浸兩次之彎曲強度,較純環氧樹脂之積層板複合材料,下降31.86%;扭轉性質亦下降18.28%,由扭轉疲勞試驗中發現,於小角度(30°)之扭轉疲勞試驗,奈米銀線可抑制裂縫延伸,大角度(40°, 50°)之之扭轉疲勞試驗則發生快速脫層破壞之現象,顯示奈米銀線之塗浸,較無法抵抗較為快速之破壞模式。
Silver nanowire (AgNWs) is a new kind of one-dimensional nanomaterial. AgNWs have been prepared with the polyol reduction method. In this research, the nanocomposites content silver nanowires and graphenes has been studied. The synergic effects of silver nanowires and graphene nanocomposites had been researched for their thermal and electrical properties. The addition of graphene has improved the thermal and electrical properties of nanocomposite. In the same time, the thermal stability of nanocomposites AgNWs and can be enhanced due to the gas impermeability of graphene. A new type of polymer resin, benzoxazine, has mixed with epoxy became co-polymer to enhance the thermal oxidation stability with their batter water and gas impermeability.
The AgNWs has been coated on the carbon fibers with dip-coating method. The mechanical properties of carbon fiber reinforced polymers (CFRP) content AgNWs are fail easily, because of the serious delamination of CFRPs. The flexural and torsion tests were decreased obviously. In the torsion fatigue, with the small angle twisting (30°), the fatigue life of CFRP contents AgNWs have barely negative effects, de to the AgNWs may resist the crack propagation. However, with the larger angle twisting (40°, 50°), the fatigue life of CFRP contents AgNWs reduced dramatically with the weakly interfacial interaction between AgNWs, carbon fibers, and epoxy.
摘要 I
Abstract II
表目錄 VII
圖目錄 VIII
符號表 XI
第一章緒論 1
1.1前言 1
1.2研究動機 3
1.3研究目的 4
第二章 文獻回顧 7
2.1奈米銀線 7
2.1.1奈米銀線的製備 7
2.1.2奈米銀線現今的運用 8
2.2石墨烯 9
2.2.1石墨烯之性質 9
2.2.2石墨烯奈米複合材料 10
2.3氧代氮代苯并環己烷 11
2.3.1氧代氮代苯并環己烷性質 11
2.3.2氧代氮代苯并環己烷之應用 12
2.4環氧樹脂 13
2.4.1環氧樹脂性質 13
2.4.2環氧樹脂硬化反應機制 14
2.4.3環氧樹脂之應用 15
2.5碳纖維補強高分子複合材料 16
2.6材料疲勞損傷機制 17
2.7奈米補強材於複合材料之機械與疲勞性質 18
2.7.1奈米補強材於環氧樹脂中之分散性 18
2.7.2奈米補強材於高分子材料之機械性質探討 19
2.7.3奈米補強材於碳纖維積層板之機械性質探討 20
第三章 實驗方法 21
3.1實驗藥品 21
3.2實驗設備與儀器 24
3.2.1實驗設備 24
3.2.2測試儀器 26
3.3材料製備流程 30
3.3.1奈米銀線之合成 30
3.3.2環氧樹脂/Benzoxazine/石墨烯/奈米銀線之複材薄膜製備 30
3.3.3奈米複合材料薄膜之熱氧化製程 32
3.3.4奈米銀線/碳纖維積層板複合材料 32
3.4實驗測試方法 34
3.4.1奈米銀線材料鑑定方法 34
3.4.2奈米複合材料薄膜電性質、熱性質量測 34
3.4.3碳纖維積層板複合材料機械性質試驗方法與流程 36
第四章 結果與討論 38
4.1材料鑑定 38
4.1.1奈米銀線鑑定 38
4.1.2奈米銀線與石墨烯 39
4.1.3氧代氮代苯并環己烷(Benzoxazine)鑑定 41
4.2奈米銀線/石墨烯/Benzoxazine/環氧樹脂複材之熱電性質之研究 42
4.2.1奈米銀線/石墨烯/Benzoxazine/環氧樹脂複材之電性質研究 42
4.2.2奈米複合材料之熱氧化製程與電性質之研究 45
4.2.3環氧樹脂/Benzoxazine/石墨烯/奈米銀線複材之熱性質之研究 47
4.3環氧樹脂/奈米銀線/碳纖維積層板複合材料電與機械性質之研究 51
4.3.1奈米銀線/碳纖維之電性質 51
4.3.2環氧樹脂/奈米銀線/碳纖維積層板複合材料之電性質 52
4.3.3環氧樹脂/奈米銀線/碳纖維積層板複合材料之彎曲性質測試 52
4.3.4環氧樹脂/奈米銀線/碳纖維積層板複合材料之扭轉性質測試 54
4.3.5環氧樹脂/奈米銀線/碳纖維積層板複合材料之扭轉疲勞測試 55
第五章 結論 58
5.1結論 58
5.2未來展望 59
參考文獻 61
附表 67
附圖 70
[1] Y. Sun, Y. Yin, B .T. Mayers, T. Herricks and Y. Xia, “Uniform Silver Nanowires Synthesis by Reducing AgNO_3with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone),” Chemical Materials; 14, 4736-4745, 2002.
[2] B. Wiley, Y. Sun and Y. Xia, “Synthesis of Silver Nanostructures with Controlled Shape and Properties,” Accounts of Chemical Research; 40, 1067–1076, 2007.
[3] S. E. Skrabalak, B. J. Wiley, M. Kim,E. V. Formo and Y. Xia,| “On the Polyol Synthesis of Silver Nanostructures: Glycolaldehyde as a Reducing Agent,” Nano Letters, 8, 2077-2081, 2008.
[4] P. Jiang, S. Y. Li, S. S. Xie, Yan Gao and L. Song, “Machinable Long PVP-Stabilized Silver Nanowires,” Chemistry-A European Journal, 10, 4817 – 4821, 2004.
[5] Y. Zhu, Q. Qin, F. Xu, F. Fan, Y. Ding, T. Zhang, B. J. Wiley and Z. L. Wang, “Size effects on elasticity, yielding, and fracture of silver nanowires: In situ experiments,” PHYSICAL REVIEW B, 85, 045443, 2012.
[6] C. Liu and X. Yu, “Silver nanowire-based transparent, flexible, and conductive thin film,” Nanoscale Research Letters, 6, 75,2011.
[7] J. Jiu, M. Nogi, T. Sugahara, T. Tokuno, T. Araki, N. Komoda, K. Suganuma, H, Uchidab and K. Shinozakib, “Strongly adhesive and flexible transparent silver nanowire conductive films fabricated with a high-intensity pulsed light technique,” Journal of Materials Chemistry, 22, 23561-23567, 2012.
[8] R. Zhu, C. H. Chung, K. C. Cha, W. Yang, Y. Bing Zheng, H.Zhou,T. B. Song,C. C. Chen, P. S. Weiss, G, Li and Y. Yang, “Fused Silver Nanowires with Metal Oxide Nanoparticles and Organic Polymers for Highly Transparent Conductors,” ACS Nano, 5, 9877–9882, 2011.
[9] L. Hu, H. S. Kim, J. Y. Lee, P. Peumans and Y. Cui, “Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes,” ACS Nano, 4, 2955–2963, 2010.
[10] C. Chen , Y. Tang, Y. S. Ye, Z. Xue, Y. Xue , X. Xie and Y.W. Mai, “High-performance epoxy/silica coated silver nanowire composites as underfill material for electronic packaging,” Composites Science and Technology, 105, 80-85, 2014.
[11] Y. Hsiuan, C. C. M. Ma, C. C. Teng, Y. L. Huang and H. W. Tien , “Enhanced thermal and mechanical properties of epoxy composites filled with silver nanowires and nanoparticles,” Journal of the Taiwan Institute of Chemical Engineers, 44, 654-659, 2013.
[12] M. Guo, X. Yi, G. Liu and L. Liu “Simultaneously increasing the electrical conductivity and fracture toughness of carbon–fiber composites by using silver nanowires-loaded interleaves,” Composites Science and Technology, 97, 27-33, 2014.
[13] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science, 306, 666-669, 2004.
[14] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials, 6, 183 -191, 2007.
[15] C. Lee, X. Wei, J. W. Kysar and J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene,” Science, 321, 385-388, 2008.
[16] P. N. Nirmalraj, T. Lutz, S. Kumar, G. S. Duesberg, and J. J. Boland, “Nanoscale Mapping of Electrical Resistivity and connectivity in Graphene strips and Networks,” Nano Letters, 11, 16-22, 2011.
[17] H. Kim, A. A. Abdala and C. W. Macosko, “Graphene Polymer Nanocomposites,” Macromolecules, 43, 6515-6530, 2010.
[18] G. Wang , X. Shen, B, Wanga, J, Yao and J. Park, “Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets,” Carbon, 47, 1359-1364, 2009.
[19] M. A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z. Z. Yu and N. Koratkar, “Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content,” ACS Nano, 3, 3884-3890, 2009.
[20] J. Liang, Y. Wang, Y. Huang, Y. Ma , Z. Liu , J. Caib, C. Zhang, H. Gao and Y. Chen, “Electromagnetic interference shielding of graphene/epoxy composites,” Carbon, 47, 922-925, 2009.
[21] W. Dai1, J. Yu, Y. Wang, Y. Song, H. Liao, N. Jiang, H. Bai, “Enhanced Thermal and Mechanical Properties of Polyimide/Graphene Composites,” Macromolecular Research, 22, 983-989, 2014.
[22] N. N. Ghosh1, B. Kiskan and Y. Yagci, “Polybenzoxazines—New high performance thermosetting resins: Synthesis and properties,” Progress in Polymer Science, 32, 1344-1391, 2007.
[23] F. W. Holly and A. C. Cope. “Condensation products of aldehydes and ketones with o-aminobenzyl alcohol and o-hydroxy-benzylamine,” Journal of the American Chemical Society, 66, 1875–9, 1944.
[24] H. Ishida and D. J. Allen “Physical and Mechanical Characterization of Near-Zero Shrinkage Polybenzoxazines,” Journal of Polymer Science: Part B, 34, 1019-1030, 1996.
[25] H. Y. Low and H. Ishida, “Structural effects of phenols on the thermal and thermo-oxidative degradation of Polybenzoxazine,” Polymer, 40, 4365–4376, 1999.
[26] J. Dunkers and H. Ishida, “Reaction of Benzoxazine-Based Phenolic Resins with Strong and Weak Carboxylic Acids and Phenols as Catalysts,” Journal of Polymer Science: Part A, 37, 1913-1921, 1999.
[27] M. Xu, X. Yang, R. Zhao and X. Liu, “Polymerizing Behavior and Processability of Benzoxazine/Epoxy Systems and Their Applications for Glass Fiber Composite Laminates,” Journal of Applied Polymer Science, 128, 1176-1184, 2013.
[28] Q. Chen, R. Xu and D. Yu, “Multiwalled carbon nanotube/polybenzoxazine nanocomposites: Preparation, characterization and properties,” Polymer, 7711-7719, 2006.
[29] S. Rimdusit and H. Ishida, “Development of new class of electronic packaging materials based on ternary systems of benzoxazine, epoxy, and phenolic resins,” Polymer, 41, 7941-7949, 2000.
[30] S. Rimdusit and H. Ishida, “Very high thermal conductivity obtained by boron nitridelled polybenzoxazine,” Thermochim Acta, 320, 177-186, 1998.
[31] B. Ellis, “Chemistry and Technology of Epoxy Resin,” Blackie Academic and professional , 1993.
[32] C. C. Riccardi and R. J. J. Williams, “A kinetic scheme for an amine-epoxy reaction with simultaneous etherification,” Journal of Applied Polymer Science, 32, 3445-3456, 1986.
[33] 王國書, “石墨烯/高分子預浸材積層板複合材料之機械與電性質研究,” 國立清華大學動力機械工程學系碩士論文, 2007.
[34] 蕭世明, “含磷/氮難燃高分子之製備與熱穩定性質,” 國立中興大學化學工程學系碩士論文, 2001.
[35] 陳平、王德中編著, “環氧樹脂及其應用,” 化學工業出版社, 北京, 2004.
[36] 馬振基編著, “高分子複合材料,” 國立編譯館, 1995.
[37] F. Pegorin, K. Pingkarawat and A.P. Mouritz, “Comparative study of the mode I and mode II delamination fatigue properties of z-pinned aircraft composites,” Materials and Design, 65, 139-146, 2015.
[38] K. L. Reifsnider, E. G. Henneke, W. W. Stinchcomb and J. J. Duke, “Mechanics of composite materials, Recent Advances,” Pergamon Press, New York, 1983.
[39] F. Meng, H. Ishida and X. Liu, “Introduction of benzoxazine onto the graphene oxide surface by click chemistry and the properties of graphene oxide reinforced polybenzoxazine nanohybrids,” RSC Advances, 4, 9471-9475, 2014.
[40] M. A. Rafiee, W. Lu, A. V. Thomas, A. Zandiatashbar, J. Rafiee, J. M. Tour, and N. A. Koratkar, “Graphene Nanoribbon Composites,” ACS Nano, 4, 7415–7420, 2010.
[41] M. A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z. Z. Yu and N. Koratkar, “Fracture and fatigue in graphene nanocomposites,” Small, 6, 179-183, 2010.
[42] D. R. Bortz, E. G. Heras and I. Martin-Gullon, “Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites,” Macromolecules, 45, 238–245.
[43] L. C. Tang, Y. J. Wan, D. Yan, Y. B. Pei, L. Zhao, Y. B. Li, L. B. Wu, J. X. Jiang and G. Q. Lai, “The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites,” Carbon, 60, 16-27, 2013..
[44] J. N. Coleman, U. Khan and Y. K. Gun'ko, “Mechanical reinforcement of polymers using carbon nanotubes,” Advanced Materials, 18, 689-706, 2006.
[45] 林彥銘, “改質石墨烯微片/石墨烯/纖維積層板複合材料機械性質暨扭轉疲勞之研究,” 國立清華大學動力機械工程學系碩士論文, 2011.
[46] 楊又璇, “多壁石墨烯對纖維補強高分子預浸材積層板複合材料機械性質與扭轉疲勞特性之研究,” 國立清華大學動力機械工程學系碩士論文, 2011.
[47] D. R. Bortz, C. Merino and I. Martin-Gullon, “Mechanical characterization of hierarchical carbon fiber/nanofiber composite laminates,” Composites Part A: Applied Science and Manufacturing, 42, 1584-1591, 2011.
[48] J. Chiguma, E. Johnson, P. Shah, N. Gornopolskaya and W. E. Jones Jr, “Thermal Diffusivity and Thermal Conductivity of Epoxy-Based Nanocomposites by the Laser Flash and Differential Scanning Calorimetry Techniques,” Open Journal of Composite Materials, 3, 51-62, 2013.
[49] ASTM D790-10, “Flexural Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials,” Annual Book of ASTM Standards, 2010.
[50] ASTM E739-91, “Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (E-N) fatigue Data,” 2004.
[51] C. T. Lo and K. H. Tsui, “The dispersion of magnetic nanorods in poly(2-vinylpyridine),” Polymer International, 62, 1652-1658, 2013.
[52] W. Zhang, Y. Liu, R. Cao, Z. Li, Y. Zhang, Y. Tang and K. Fan, “Synergy between Crystal Strain and Surface Energy in Morphological Evolution of Five-Fold-Twinned Silver Crystals,” Journal of the American Chemical Society, 130, 15581–15588, 2008.
[53] 邱國斌, 蔡定平,“金屬表面電漿簡介,”物理雙月刊, 28,472-485,2006.
[54] Y.L. Liu, J. M. Yu and C.I. Chou, “Preparation and Properties of Novel Benzoxazine and Polybenzoxazine with Maleimide Groups,” Journal of Polymer Science: Part A: Polymer Chemistry, 42, 5954-5963, 2004.
[55] V. H. Luan, H. N. Tien, T. V. Cuong, B. S. Kong, J. S. Chung, E. J. Kima and S. H. Hur, “Novel conductive epoxy composites composed of 2-D chemically reduced grapheme and 1-D silver nanowire hybrid fillers,” Journal of Materials Chemistry, 22, 8649-8653, 2012.
[56] W. Xu, Q. Xu, Q. Huang, R. Tan, W. Shen, W. Song, “Electrically conductive silver nanowires-filled methylcellulose composite transparent films with high mechanical properties,” Materials Letters, 152,173-176, 2015.
[57] Q. Kuang, X. Wang, Z. Jiang, Z. Xie and L. Zheng, “High-Energy-Surface Engineered Metal Oxide Micro- and Nanocrystallites and Their Applications,” Accounts of chemical research, 47, 308-318, 2014.
[58] N. Tian, Z. Y. Zhou,; S. G. Sun,; Y. Ding, Z. L. Wang, “Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity,“ Science, 316, 732–735, 2007.
[59] Y. Ahn, Y. Jeong, and Y. Lee, “Improved Thermal Oxidation Stability of Solution-Processable Silver Nanowire Transparent Electrode by Reduced Graphene Oxide,” ACS Applied Materials and Interfaces, 4, 6410-6414, 2012.
[60] H. D. Baehr, K. Stephan, “Heat and Mass transfer Third Edition,” Springer, 2011.
[61] H. Lin, S.Xu, X. Wang and N. Mei, “Significantly reduced thermal diffusivity of free-standing two-layer graphene in graphene foam,” Nanotechnology, 24, 415706-415715, 2013.
[62] R. Plengudomkit, M. Okhawilai, S. Rimdusit, “Highly Filled Graphene-Benzoxazine Composites as Bipolar Plates in Fuel Cell Applications,” Polymer Composites, 37, 1715-1727, 2016.
[63] J. R. Christman, “Fundamental of solid state physics,” John Wiley, 1988.
[64] A. Henry, “Thermal Transport in Polymers,” Annual Review of Heat Transfer, 17, 485-520, 2014.
[65] S. Rimdusit,T. Mongkhonsi, P. Kamonchaivanich, K. Sujirote and S.Thiptipakorn, “Effects of polyol molecular weight on properties of benzoxazine–urethane polymer alloys,” Polymer Engineering and Science, 48, 2238-2246, 2008.
[66] M. Hu, S. Shenogin and P. Keblinski, “Molecular dynamics simulation of interfacial thermal conductance between slicon and amorphous polyethylene,” Applied Physics Letters, 91, 241910-1-241910-3, 2007.
[67] W. Cui, Y. W. Mai and F. Du “Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes,” Carbon, 49, 495-500, 2011.
[68] M. Guo, X. Yi, G. Liu, L. Liu, “Simultaneously increasing the electrical conductivity and fracture toughness of carbon–fiber composites by using silver nanowires-loaded interleaves,” Composites Science and Technology, 97, 27-33, 2014.
[69] 林秀臨, “多壁石墨烯/石墨烯微片/氧代氮代苯并環己烷/環氧樹脂碳纖維積層板複合材料機械性質暨疲勞壽命之研究,” 國立清華大學動力機械工程學系碩士論文, 2015.
[70] S Fang, D.D.L Chung, “Carbon fibre composites with improved fatigue resistance due to the addition of tin-lead alloy particles,” Composites, 21, 419-424, 1990.
[71] D. D. L. Chung, “Carbon Fiber Composites,” Butterworth-Heinemann, 1994.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *