帳號:guest(3.128.95.148)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李聖暐
作者(外文):Li, Sheng Wei
論文名稱(中文):磁流變液應用在剎車致動器之設計參數研究
論文名稱(外文):Parametric Investigation of a Brake Actuator by Using Magneto-Rheological Fluid
指導教授(中文):張禎元
指導教授(外文):Chang, Jen-Yuan
口試委員(中文):宋震國
曹哲之
口試委員(外文):Sung, Cheng-Kuo
Tsao, Che-Chih
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:103033560
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:94
中文關鍵詞:智能流體剎車
外文關鍵詞:Intelligent fluidBrake
相關次數:
  • 推薦推薦:0
  • 點閱點閱:457
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
剎車不管在傳統交通工具或是工具機產業中都是一個常見的機械元件,隨著科技的發展,剎車致動器由傳統的鋼索式、油壓式改為向電子化發展,目前市面上現有的產品且為非直接接觸式的電子剎車根據其作用方式可以分為兩種主要的類型,分別是電磁感應式、以及智能流體式剎車。其中電磁感應式主要是利用電流的磁效應產生剎車制動力,智能流體式剎車是利用轉動件與固定件之間的流體所具有的黏滯力做為剎車制動力之來源,且因智能流體的黏滯力會隨外加激磁源強度的改變而變化,固可利用此特點作為控制剎車扭矩之條件,此兩種剎車與傳統剎車相比因不會有實質的固體接觸,故其具有磨耗較低之優點,然而針對智能流體式剎車之研究於國內並不普及故本論文將設計一智能流體式剎車,並且針對此一剎車模型探討以下三種參數對於剎車制動力之輸出大小的影響,第一:外加激磁源與智能流體間距離的影響,第二:不同轉速下的影響,第三:外加激磁源於剎車上所佔角度之影響,於研究過程中將從模擬、實驗以及簡易的理論模型三個不同面向去探討,同時相互驗證結果。
研究成果顯示出,當轉速大於每分鐘六十轉時,本論文所提出之計算模型其理論值與量測值間誤差穩定低於十四個百分比。
Brake system has a long history on development and has been widely applied on mechanical components in the field of transportations and machine tools. There are many different types of brake mechanisms, such as using tension cables, hydraulics and electronics. Electronic brakes are becoming a very popular and main stream solution for brake mechanism. Currently, the existing non-contact brakes on the market can be divided into two main types which are electromagnetic induction brakes, and intelligent fluid brakes. Electromagnetic induction brakes use the induced magnetic field of an electric current to produce braking force. The braking force for the intelligent fluid brake is provided by the viscous force existing between stators and rotors. For the reason that the viscous force of the intelligent fluid will change with the intensity of the external excitation source, the characteristic can be used to control the braking torque. Comparing with the conventional brake system, these two brakes have the advantage of low wear for the reason that the brake does not have solid contact. However, the intelligent fluid brake studied by this research is not popular in Taiwan. Therefore, a novel intelligent fluid brake using permanent magnet as the external excitation has been investigated in this thesis. For the intelligent fluid brake, there are three factors related to the brake torque have been studied in the thesis. First, the distance between the external excitation and the surface of the intelligent fluid. Second, the rotating speed of the rotor. Third, the arrangement angle of the external excitation. The research has been conducted in three aspects which are simulation, analysis and the theoretical model.
The result of the study shows that the error percentage between the theoretical value from the proposed calculation model and measured value can be as low as 1% , while the error is measured to be lower than 14% with rotating speeds greater than 60RPM.
第一章 緒論 1
1.1研究背景 1
1.2研究動機與目的 3
1.3文獻回顧 7
1.4研究方法 12
第二章 理論背景 13
2.1磁流變液之組成特性與工程應用 13
2.1.1智能流體 13
2.1.2磁流變液(Magnetorheological fluid)之組成成分與特性 14
2.1.3賓漢模型(Bingham model)於磁流變液之應用 15
2.1.4磁流變液之黏滯係數 16
2.1.5磁流變液於工程上之操作模式 17
2.2電磁學理論 19
2.2.1安培定理 19
2.2.2 B-H關係 20
2.2.3 磁通量與高斯定律 22
2.2.4電磁分析 23
2.2.5 含磁流變液之磁路分析 25
第三章 磁流變液剎車之結構設計與磁場分布 27
3.1磁流變液剎車結構設計 27
3.1.1磁流變液剎車之設計概念 27
3.1.2 磁流變液剎車輸出扭矩之計算 29
3.1.3外加磁場設置與控制方法 30
3.2磁流變液剎車之磁場模擬與量測 34
3.2.1 Ansoft Maxwell 3D建模 35
3.2.2磁場量測 36
3.2.3模擬與量測結果之比較 38
第四章 磁流變液剎車之量測平台架設與性能測試 40
4.1磁流變液剎車扭矩測試平台 40
4.2透過模擬推算磁流變液剎車所能輸出之扭矩 44
4.3扭矩測試結果 47
4.3.1固定永久磁鐵排列角度為360°之扭矩測試結果 47
4.3.2固定永久磁鐵排列角度為300°之扭矩測試結果 49
4.3.3固定永久磁鐵排列角度為240°之扭矩測試結果 51
4.3.4固定永久磁鐵排列角度為180°之扭矩測試結果 53
4.3.5固定永久磁鐵排列角度為120°之扭矩測試結果 55
4.3.6固定永久磁鐵排列角度為60°之扭矩測試結果 57
4.4理論值與量測結果之比較 59
4.4.1固定永久磁鐵排列角度為360°之理論值與量測結果比較 61
4.4.2固定永久磁鐵排列角度為300°之理論值與量測結果比較 63
4.4.3固定永久磁鐵排列角度為240°之理論值與量測結果比較 66
4.4.4固定永久磁鐵排列角度為180°之理論值與量測結果比較 69
4.4.5固定永久磁鐵排列角度為120°之理論值與量測結果比較 72
4.4.6固定永久磁鐵排列角度為60°之理論值與量測結果比較 75
第五章 結論與未來展望 88
5.1結論 88
5.2本文貢獻 88
5.3未來展望 89
參考資料 91

J.-X. Huang, Modern Automotive Mechanics, 1988.
D. W. Dewis, “Eddy current Brake system”. US Patent: 6698554 B2, 21 12 2001.
黃樑傑, “國內剎車系統產業現況與發展(中),” 2009. [online].
蕭耀榮, 郭文化 且 許綱倫, “機車磁流變液防鎖死剎車系統之分析與控制,” 於 第14屆車輛工程學術研討會, 雲林縣, 2009.
J. Rabinow, “The magnetic fluid clutch,” in AIEE Transactions, 1948.
J. Rabinow, “Magnetic fluid torque and force transmitting device”. US Patent: 2575360, 20 November 1951.
Cary, “Lord Corporation, Magnetorheological(MR) Solution,” 2007. [online].
A. Olabi and A.Grunwald, "Design and application of magneto-rheological fluid," Materials and Design, vol. 28, pp. 2658-2664, 2007.
M. T. AVRAAM, "MR-fluid brake design and its application to a portable muscular rehabilitation device," in Ph.D. Thesis, Universit´e Libre de Bruxelles.
F. Q. Jiang, Z. W. Wang, J. Y. Wu and Z. L. W., "Magnetorheological materials and their application in shock absorbers," in Proceedings of the 6th International Conference on Electro-Rheological Fluids, Magneto-Rheological Suspensions and their Applications.
G. J. Hiemenz and N. M. Wereley, "Seismic Response of Civil Structures Utilizing Semi-Active MR and ER Bracing Systems," in Journal of Intelligent Material Systems and Structures, 2009.
Kikuchi, K. Ikeda, K. Otsuki, T. Kakehashi and J. Furusho, "Compact MR fluid clutch device for human-friendly actuator," in Journal of Physics: Conference Series,vol.149,2009.
M. R. K. Alex S. Shafer, "On the Feasibility and Suitability of MR Fluid Clutches in Human-Friendly Manipulator," IEEE/ASME TRANSACTIONS ON MECHATRONICS, vol. 16, no. 6, Dec. 2011 Dec 2011.
W. Li and H. Du, "Design and Experimental Evaluation of a Magnetorheological Brake," International Journal of Advanced Manufacturing Technology, pp. 508-515, 2003.
K. Karakoc and E. Park, "Considerations for an Automotive Magnetorheological Brake," Mechatronics, Elsevier, pp. 1-14, 2008.
S. M. Kalikate, S. R. Patil and S. M.Sawant, "Design and Simulation of Magneto-Rheological (MR)Brake for Automotive Application," in International Conference on Automotive Materials & Manufacturing, 2014.
Q. Yuan and Perry Y. Li, "Energy-Saving Control of an Unstable Valve with a MR Brake," in American Control Conference, 2005.
J. Tong and K. Huang, "Semi-Active Spiral Flow Channel Magnetorheological Damper," in IEEE 17th International Conference on Computational Science and Engineering, 2014.
W. Szelag, "Simulation and Investigation of Magnetorheological Fluid Brake," 2008.
A. S. Shafer and M. R. Kermani, "On the Feasibility and Suitability of MR Fluid Clutches in Human-Friendly Manipulator," in IEEE/ASME TRANSACTIONS ON MECHATRONICS, vol. 16, no. 6, Dec. 2011.
Wislow and W.M., "Induced Fibration of Suspensions," Journal of Applied Physics, pp. 1137-1140., Dec 1949.
D. Baranwal and D. T. Deshmukh, "MR-Fluid Technology and Its Application-A REview," International Journal of Emerging Technology and Advanced Engineering, Dec 2012.
N. Wereley, R. Radhakrishnan and T. Sudarshan, "Behaviour of Magneto-rheological fluids utilizing nano powder iron," International Journal of Modern Physics B, vol. 16, p. 2392–2398, July 2002.
R. W. Phillips, "Engineering Applications of Fluids with a Variable Yield Stress," 1969.
D. G. Thomas, "A note on the viscosity of Newtonian suspensions of uniform spherical particles," J. Colloid Sci, p. 267, 1965.
A. Olabi and A. Grunwald, "Design and application of magneto-rheological fluid," Materials and Design, vol. 28, pp. 2658-2664, 2007.
Y.-C. Lin, "Research and Development of a Compliant Exoskeleton Joint by Using Magnetorheological Fluid," 2014.
"產品一覽:台灣東方馬達股份有限公司," [Online]. Available: https://www.orientalmotor.com.tw/products/sc/list/detail/?brand_tbl_code=BL&product_name=BMU5120C-5-1. [Accessed 2 6 2016].
A. C. Becnel and BecnelCraigAndrew, "High Strength Semi-Active Energy Absorbers Using Shear-and Mixed-Mode Operation At High Shear Rates," 2014.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *