帳號:guest(18.223.196.180)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張翼麟
作者(外文):Chang, I-Lin
論文名稱(中文):微波電漿化學氣相沉積法合成奈米碳材料複合鑽石薄膜之場發射特性研究
論文名稱(外文):Study on field emission characteristic of nano-carbon material/diamond composite films synthesized by MPCVD
指導教授(中文):蔡宏營
指導教授(外文):Tsai, Hung-Yin
口試委員(中文):柳克強
葉孟考
曾仕君
口試委員(外文):Leou, Keh-Chyang
Yeh, Meng-Kao
Tseng, Shih Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:103033558
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:158
中文關鍵詞:場發射奈米碳管奈米碳片球奈米晶體鑽石薄膜化學氣相沉積法溶膠凝膠法
外文關鍵詞:field emissioncarbon nanotubecarbon nanoflake ballnanocrystalline diamond filmchemical vapor depositionsol-gel process
相關次數:
  • 推薦推薦:0
  • 點閱點閱:421
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究目的在於製作具良好場發射效應之鑽石薄膜複合奈米碳材料之尖端結構,藉由場發射之高功率與低耗能的優點,可應用於未來之超薄型顯示器與攜帶式X光器等。
由於場發射特性所需之優點皆能展現於不同奈米碳材料之中,因此本研究希望結合鑽石的高化學穩定性、奈米碳管的高深寬比以及奈米碳片球的銳邊結構,提出具低起始電場、高穩定性、長操作壽命及高電流密度的場發射陰極材料。
本研究透過微波電漿化學氣相沉積法(microwave-plasma- assisted chemical vapor deposition, MPCVD)配合溶膠凝膠法,成功於矽基板(100)上成長具良好場發射特性之奈米晶體鑽石(sp3)複合奈米碳管(sp2)與奈米碳片球(sp3與sp2)之新興碳材料,而以N2/H2/CH4 = 40/80/20之參數於奈米晶體鑽石上所成長之奈米碳複合材料(CNFB-CNT-1s-NCD-2 h)擁有低起始電場(1.89 V/μm)及兩階段場增益因子(2151與6997)。除此之外,CNFB-CNT-1s-NCD-2 h也具有良好之場發射壽命與穩定性,可於電流密度0.55 mA/cm2以上維持50個小時,並在50個小時之定電壓的壽命量測後,其場發射電流密度僅有11%的衰減。

The purpose of this study is to produce a material containing nano-tip-structure carbon material and nanocrystalline diamond (NCD) film with high field emission effect. It can be applied to ultrathin monitor or micro-resolution X-Ray Tube, owing to its high power advantages and lower energy cost.
Materials with excellent field emission properties usually show a low turn-on field, high emission current density, high stability, and long lifetime. However, these four characteristics are usually seen in different carbon materials, but it is very difficult to find them in the same material. Therefore, in this study, a hybrid material with the properties of high chemistry stability from nanocrystalline diamond, high aspect ratio from carbon nanotube and sharp edge from carbon nanoflake ball has been fabricated.
A hybrid material consisting of carbon nanotubes (CNTs) and carbon nanoflake balls (CNFBs) was successfully synthesized on NCD film by microwave-plasma-assisted chemical vapor deposition using a H2/CH4/N2 ratio of 4:1:2 at 80 torr for 30 min and the precursor used was a sol-gel solution containing ferric nitrate, tetrabutyl titanate, and n-propanol.
The carbon hybrid material (CNFB-CNT-1s-NCD-2 h) exhibited excellent field emission properties, with its turn-on field being 1.89 V/µm. It also showed two-level field enhancement factors (2151and 6997) for different electric fields. The emission current density of the hybrid remained was higher than 0.55 mA/cm2 for more than 50 h and was 0.89 mA/cm2 even after 50 h of continuous emission.
摘要 I
Abstract II
致謝 IV
目錄 VIII
表目錄 XIII
圖目錄 XIV
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 5
第二章 文獻回顧 7
2.1 場發射效應 7
2.1.1 電子發射源 7
2.1.2 熱游離發射 (thermionic emission) 8
2.1.3 肖特基場發射 (Schottky emission) 9
2.1.4 冷場發射 (cold field emission) 10
2.1.5 冷場發射理論 12
2.1.6 發射端之尺寸效應 13
2.1.7 場發射遮蔽效應 16
2.2 奈米碳管 21
2.2.1 奈米碳管簡介 21
2.2.2 奈米碳管的結構與特性 23
2.2.3 奈米碳管之合成方式 25
2.2.4 奈米碳管之成長機制 28
2.2.5 奈米碳管之場發射特性 32
2.3 石墨烯 34
2.3.1 石墨烯簡介 34
2.3.2 石墨烯之結構與特性 34
2.3.3 石墨烯之合成方法 37
2.3.4 石墨烯之成長機制 46
2.3.5 石墨烯之場發射特性 48
2.4 人工合成鑽石 54
2.4.1 人工合成鑽石簡介 54
2.4.2 化學氣相沉積人工鑽石與其成長機制 55
2.4.3 人工鑽石之場發射特性 56
2.5 碳複合薄膜之場發射特性 61
2.5.1 奈米碳管與鑽石之雙層結構 61
2.5.2 奈米碳管複合石墨烯 62
2.5.3 氧化鋅奈米柱複合石墨烯之薄膜 73
2.6 兩階段β之場發射機制 74
2.6.1 空間電荷效應 (space-charge effect) 74
2.6.2 表面吸附 (desorption of adsorbates) 75
2.6.3 界面電阻 (interface resistance) 77
2.6.4 不同的場發射結構 (different structure of emitter) 78
2.7 碳材料之拉曼光譜檢測 80
第三章 實驗製程與儀器 85
3.1 實驗設計 85
3.2 實驗儀器與材料 86
3.2.1 微波電漿化學氣相沉積系統 86
3.2.2 場發射量測儀 88
3.2.3 拉曼光譜分析儀 (Raman spectrometer) 90
3.2.4 掃描式電子顯微鏡 90
3.2.5 實驗用品 91
3.3 實驗製程 92
3.3.1 試片前處理 92
3.3.2 溶膠凝膠法之製備觸媒 92
3.3.3 旋轉塗佈溶膠凝膠觸媒 93
3.3.4 成長奈米碳材料 94
3.3.5 成長鑽石薄膜 95
3.3.6 於鑽石薄膜上成長奈米碳複合材料 95
第四章 實驗分析與結果討論 96
4.1 奈米碳材料之成長 96
4.1.1 奈米碳管 96
4.1.2 奈米石墨片 100
4.1.3 奈米碳片球 101
4.1.4 奈米碳管複合奈米碳片球 104
4.1.5 奈米碳材料之拉曼光譜分析 106
4.1.6 奈米碳材料之場發射特性 108
4.1.7 CNFB-CNT-1s之成長與場發射機制 115
4.2 CNFB-CNT複合材料之結構改善 119
4.2.1 製程功率對CNFB-CNT之結構與其場發射的影響 119
4.2.2 兩步驟成長CNFB-CNT之結構與其場發射特性 124
4.3 CNFB-CNT複合鑽石之材料 133
4.3.1 CNT與CNFB之TEM分析 134
4.3.2 CNFB-CNT複合NCD薄膜之結構與其場發射特性 135
4.3.3 奈米碳材料之場發射壽命與穩定性 143
第五章 結論與未來展望 145
5.1 結論 145
5.2 未來展望 146
參考文獻 148

[1] M. Terrones, A. R. Botello-Méndez, J. Campos-Delgado, F. López-Urías, Y. I. Vega-Cantú, F. J. Rodríguez-Macías, et al., "Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications," Nano Today, vol. 5, pp. 351-372, 2010.
[2] A. Karabutov, V. Frolov, and V. Konov, "Diamond/sp2-bonded carbon structures: quantum well field electron emission?," Diamond and Related Materials, vol. 10, pp. 840-846, 2001.
[3] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, pp. 56-58, 1991.
[4] M. Doytcheva, M. Kaiser, and N. De Jonge, "In situ transmission electron microscopy investigation of the structural changes in carbon nanotubes during electron emission at high currents," Nanotechnology, vol. 17, p. 3226, 2006.
[5] 黃承均與黃淑娟, "石墨烯的發展與應用(上)," 工業材料雜誌, vol. 274, pp. 119-222, 2010.
[6] L. Liao, H. Lu, M. Shuai, J. Li, Y. Liu, C. Liu, et al., "A novel gas sensor based on field ionization from ZnO nanowires: moderate working voltage and high stability," Nanotechnology, vol. 19, p. 175501, 2008.
[7] Y. Li, Y. Sun, and J. Yeow, "Nanotube field electron emission: principles, development, and applications," Nanotechnology, vol. 26, p. 242001, 2015.
[8] E. L. Murphy and R. Good Jr, "Thermionic emission, field emission, and the transition region," Physical Review, vol. 102, p. 1464, 1956.
[9] S. Christov and C. Vodenicharov, "On the experimental proof of the general theory of electron emission from metals," Solid-State Electronics, vol. 11, pp. 757-766, 1968.
[10] O. W. Richardson, "The electrical conductivity imparted to a vacuum by hot conductors," Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, pp. 497-549, 1903.
[11] C. Crowell, "The Richardson constant for thermionic emission in Schottky barrier diodes," Solid-State Electronics, vol. 8, pp. 395-399, 1965.
[12] M. Kiziroglou, X. Li, A. Zhukov, P. De Groot, and C. De Groot, "Thermionic field emission at electrodeposited Ni–Si Schottky barriers," Solid-State Electronics, vol. 52, pp. 1032-1038, 2008.
[13] J. Orloff. Handbook of charged particle optics. New York: CRC Press Publishers, 2008.
[14] K. Junker and K. Heinz, "Experimental examination of the field enhanced thermal emission of holes in CdS," Physica Status Solidi (a), vol. 21, pp. 451-456, 1974.
[15] G. Fursey. Field Emission in Vacuum Microelectronics. New York: Kluwer Academic/Plenum Publishers, 2005.
[16] R. H. Fowler and L. Nordheim, "Electron emission in intense electric fields," in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 119, pp. 173-181, 1928.
[17] R. A. Millikan and C. C. Lauritsen, "Dependence of electron emission from metals upon field strengths and temperatures," Physical Review, vol. 33, p. 598, 1929.
[18] J. He, P. Cutler, and N. Miskovsky, "Generalization of Fowler–Nordheim field emission theory for nonplanar metal emitters," Applied Physics Letters, vol. 59, pp. 1644-1646, 1991.
[19] K. Jensen and E. Zaidman, "Field emission from an elliptical boss: Exact versus approximate treatments," Applied Physics Letters, vol. 63, pp. 702-704, 1993.
[20] K. Jensen and E. Zaidman, "Field emission from an elliptical boss: Exact and approximate forms for area factors and currents," Journal of Vacuum Science & Technology B, vol. 12, pp. 776-780, 1994.
[21] K. Jensen and E. Zaidman, "Analytic expressions for emission characteristics as a function of experimental parameters in sharp field emitter devices," Journal of Vacuum Science & Technology B, vol. 13, pp. 511-515, 1995.
[22] T. Fisher, "Influence of nanoscale geometry on the thermodynamics of electron field emission," Applied Physics Letters, vol. 79, pp. 3699-3701, 2001.
[23] T. Fisher and D. Walker, "Thermal and electrical energy transport and conversion in nanoscale electron field emission processes," Journal of Heat Transfer, vol. 124, pp. 954-962, 2002.
[24] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, et al., "Scanning field emission from patterned carbon nanotube films," Applied Physics Letters, vol. 76, pp. 2071-2073, 2000.
[25] J. S. Suh, K. S. Jeong, J. S. Lee, and I. Han, "Study of the field-screening effect of highly ordered carbon nanotube arrays," Applied Physics Letters, vol. 80, pp. 2392-2394, 2002.
[26] R. Smith and S. Silva, "Maximizing the electron field emission performance of carbon nanotube arrays," Applied Physics Letters, vol. 94, p. 133104, 2009.
[27] H. Kroto, J.R. Health, S.C. O’Brian, R.F. Curl, and R.E. Smalley, " C 60: buckminsterfullerene," Nature, vol. 381, p. 162, 1985.
[28] Wikipedia contributors. "Fullerene." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 14 Jun. 2016. Web. 11 Jul. 2016.
[29] W. Krätschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, "C60: a new form of carbon," Nature, vol. 347, pp. 354-358, 1990.
[30] M. Dresselhaus, G. Dresselhaus, and R. Saito, "Physics of carbon nanotubes," Carbon, vol. 33, pp. 883-891, 1995.
[31] A. Oberlin, M. Endo, and T. Koyama, "High resolution electron microscope observations of graphitized carbon fibers," Carbon, vol. 14, pp. 133-135, 1976.
[32] J. Kong, A. M. Cassell, and H. Dai, "Chemical vapor deposition of methane for single-walled carbon nanotubes," Chemical Physics Letters, vol. 292, pp. 567-574, 1998.
[33] H. Xiao. Introduction to semiconductor manufacturing technology. New Jersey: Prentice Hall Publishers, 2001.
[34] M. Hiramatsu, T. Deguchi, H. Nagao, and M. Hori, "Aligned growth of single-walled and double-walled carbon nanotube films by control of catalyst preparation," Japanese Journal of Applied Physics, vol. 46, p. L303, 2007.
[35] 徐逸明,化學氣相沉積法及電漿輔助化學氣相沉積法於低溫合成奈米碳管之研究,博士論文,國立成功大學化化學工程學系,台南,2001。
[36] J. Wilson, N. Scheerbaum, S. Karim, N. Polwart, P. John, Y. Fan, et al., "Low temperature plasma chemical vapour deposition of carbon nanotubes," Diamond and Related Materials, vol. 11, pp. 918-921, 2002.
[37] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, et al., "Crystalline ropes of metallic carbon nanotubes," Science, vol. 273, pp. 483-487, 1996.
[38] M. Kumar and Y. Ando, "Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production," Journal of Nanoscience and Nanotechnology, vol. 10, pp. 3739-3758, 2010.
[39] X. Chen, R. Wang, J. Xu, and D. Yu, "TEM investigation on the growth mechanism of carbon nanotubes synthesized by hot-filament chemical vapor deposition," Micron, vol. 35, pp. 455-460, 2004.
[40] Y. Saito, "Nanoparticles and filled nanocapsules," Carbon, vol. 33, pp. 979-988, 1995.
[41] E. Kukovitsky, S. L'vov, and N. Sainov, "VLS-growth of carbon nanotubes from the vapor," Chemical Physics Letters, vol. 317, pp. 65-70, 2000.
[42] J. Gavillet, A. Loiseau, C. Journet, F. Willaime, F. Ducastelle, and J. C. Charlier, "Root-growth mechanism for single-wall carbon nanotubes," Physical Review Letters, vol. 87, p. 275504, 2001.
[43] J. P. Gore and A. Sane, "Flame synthesis of carbon nanotubes, Carbon nanotubes-synthesis, Characterization, Applications," InTech. Available from: http://www.intechopen.com/books/carbon-nanotubes-synthesis-characterization-applications/flame-synthesis-of-carbon-nanotubes.
[44] Y. J. Huang, H. Y. Chang, H. C. Chang, Y. T. Shih, W. J. Su, C. H. Ciou, et al., "Field emission characteristics of vertically aligned carbon nanotubes with honeycomb configuration grown onto glass substrate with titanium coating," Materials Science and Engineering: B, vol. 182, pp. 14-20, 2014.
[45] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, 2007.
[46] J. C. Meyer, A. K. Geim, M. Katsnelson, K. Novoselov, T. Booth, and S. Roth, "The structure of suspended graphene sheets," Nature, vol. 446, pp. 60-63, 2007.
[47] K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. A. Dubonos, et al., "Electric field effect in atomically thin carbon films," Science, vol. 306, pp. 666-669, 2004.
[48] Thenanoage, 2016, July. Available: http://www.thenanoage.com/caebon.htm.
[49] Quantumday, 2016, July. Available: http://www.quantumday.com/2012/07/new-process-in-isolating-graphene-leads.html.
[50] R. Nair, P. Blake, A. Grigorenko, K. Novoselov, T. Booth, T. Stauber, et al., "Fine structure constant defines visual transparency of graphene," Science, vol. 320, pp. 1308-1308, 2008.
[51] K. S. Novoselov, V. Fal, L. Colombo, P. Gellert, M. Schwab, and K. Kim, "A roadmap for graphene," Nature, vol. 490, pp. 192-200, 2012.
[52] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, et al., "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature, vol. 457, pp. 706-710, 2009.
[53] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, et al., "Large-area synthesis of high-quality and uniform graphene films on copper foils," Science, vol. 324, pp. 1312-1314, 2009.
[54] F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, "Graphene photonics and optoelectronics," Nature Photonics, vol. 4, pp. 611-622, 2010.
[55] L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. Zhou, "Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics," ACS Nano, vol. 4, pp. 2865-2873, 2010.
[56] A. Kumar, A. Voevodin, D. Zemlyanov, D. Zakharov, and T. S. Fisher, "Rapid synthesis of few-layer graphene over Cu foil," Carbon, vol. 50, pp. 1546-1553, 2012.
[57] D. Boyd, W. H. Lin, C. C. Hsu, M. Teague, C. C. Chen, Y. Y. Lo, et al., "Single-step deposition of high-mobility graphene at reduced temperatures," Nature Communications, vol. 6, 2015.
[58] J. Robertson, G. Zhong, S. Esconjauregui, C. Zhang, and S. Hofmann, "Synthesis of carbon nanotubes and graphene for VLSI interconnects," Microelectronic Engineering, vol. 107, pp. 210-218, 2013.
[59] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S. S. Pei, "Graphene segregated on Ni surfaces and transferred to insulators," Applied Physics Letters, vol. 93, p. 113103, 2008.
[60] C. Wu, F. Li, Y. Zhang, and T. Guo, "Field emission from vertical graphene sheets formed by screen-printing technique," Vacuum, vol. 94, pp. 48-52, 2013.
[61] A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. Van Tendeloo, et al., "Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition," Nanotechnology, vol. 19, p. 305604, 2008.
[62] A. Malesevic, R. Kemps, A. Vanhulsel, M. P. Chowdhury, A. Volodin, and C. Van Haesendonck, "Field emission from vertically aligned few-layer graphene," Journal of Applied Physics, vol. 104, p. 084301, 2008.
[63] W. Lei, C. Li, M. T. Cole, K. Qu, S. Ding, Y. Zhang, et al., "A graphene-based large area surface-conduction electron emission display," Carbon, vol. 56, pp. 255-263, 2013.
[64] W. G. Eversole, US Patents No. 3030187 and No. 3030188.
[65] J. C. Angus, H. A. Will, and W. S. Stanko, "Growth of diamond seed crystals by vapor deposition," Journal of Applied Physics, vol. 39, pp. 2915-2922, 1968.
[66] S. Dolukhanyan, M. Nersesyan, A. Nalbandyan, I. Borovinskaya, and A. Merzhanov, "Combustion of transition metals in hydrogen," Doklady Akademii Nauk SSSR, Vol. 231, pp. 675-678, 1976.
[67] Wikipedia contributors. "Carbon." Wikipedia, The Free Encyclopedia, July, 2016.
[68] R. F. Davis. Diamond films and coatings. Park Ridge: William Andrew, 1993.
[69] S. Arora and V. Vankar, "Field emission characteristics of microcrystalline diamond films: Effect of surface coverage and thickness," Thin Solid Films, vol. 515, pp. 1963-1969, 2006.
[70] D. Pradhan, Y. Lee, C. Pao, W. Pong, and I. Lin, "Low temperature growth of ultrananocrystalline diamond film and its field emission properties," Diamond and Related Materials, vol. 15, pp. 2001-2005, 2006.
[71] 黃烜君,以多孔性氧化鋁模板製備奈米鑽石針尖場發射特性之研究,碩士論文,國立臺灣海洋大學機械與機電工程學系,基隆,2008.
[72] 曾柏棠,鑽石薄膜複合垂直寡層石墨之場發射特性研究,碩士論文,國立清華大學動力機械工程學系,新竹,2015。
[73] P. H. Tsai and H. Y. Tsai, "Fabrication and field emission characteristic of microcrystalline diamond/carbon nanotube double-layered pyramid arrays," Thin Solid Films, vol. 584, pp. 330-335, 2015.
[74] L. Zeng, D. Lei, W. Wang, J. Liang, Z. Wang, N. Yao, et al., "Preparation of carbon nanosheets deposited on carbon nanotubes by microwave plasma-enhanced chemical vapor deposition method," Applied Surface Science, vol. 254, pp. 1700-1704, 2008.
[75] J. Qi, X. Wang, W. Zheng, H. Tian, C. Liu, Y. Lu, et al., "Effects of total CH4/Ar gas pressure on the structures and field electron emission properties of carbon nanomaterials grown by plasma-enhanced chemical vapor deposition," Applied Surface Science, vol. 256, pp. 1542-1547, 2009.
[76] J. H. Deng, R. T. Zheng, Y. Zhao, and G. A. Cheng, "Vapor–solid growth of few-layer graphene using radio frequency sputtering deposition and its application on field emission," ACS Nano, vol. 6, pp. 3727-3733, 2012.
[77] J. Liu, B. Zeng, X. Wang, W. Wang, and H. Shi, "One-step growth of vertical graphene sheets on carbon nanotubes and their field emission properties," Applied Physics Letters, vol. 103, p. 053105, 2013.
[78] J. H. Deng, G. A. Cheng, R. T. Zheng, B. Yu, G. Z. Li, X. G. Hou, et al., "Catalyst-free, self-assembly, and controllable synthesis of graphene flake–carbon nanotube composites for high-performance field emission," Carbon, vol. 67, pp. 525-533, 2014.
[79] Z. Yang, Q. Zhao, Y. Ou, W. Wang, H. Li, and D. Yu, "Enhanced field emission from large scale uniform monolayer graphene supported by well-aligned ZnO nanowire arrays," Applied Physics Letters, vol. 101, p. 173107, 2012.
[80] J. M. Bonard, J. P. Salvetat, T. Stöckli, W. A. De Heer, L. Forró, and A. Châtelain, "Field emission from single-wall carbon nanotube films," Applied Physics Letters, vol. 73, p. 918, 1998.
[81] J. M. Bonard, F. Maier, T. Stöckli, A. Chaˆtelain, W. A. de Heer, J. P. Salvetat, et al., "Field emission properties of multiwalled carbon nanotubes," Ultramicroscopy, vol. 73, pp. 7-15, 1998.
[82] Y. C. Choi, Y. M. Shin, D. J. Bae, S. C. Lim, Y. H. Lee, and B. S. Lee, "Patterned growth and field emission properties of vertically aligned carbon nanotubes," Diamond and Related Materials, vol. 10, pp. 1457-1464, 2001.
[83] J. Zhang, C. Yang, W. Yang, T. Feng, X. Wang, and X. Liu, "Appearance of a knee on the Fowler–Nordheim plot of carbon nanotubes on a substrate," Solid State Communications, vol. 138, pp. 13-16, 2006.
[84] Y. Shen, S. Deng, Y. Zhang, F. Liu, J. Chen, and N. Xu, "Highly conductive vertically aligned molybdenum nanowalls and their field emission property," Nanoscale Research Letters, vol. 7, p. 1, 2012.
[85] T. De Beer, A. Burggraeve, M. Fonteyne, L. Saerens, J. P. Remon, and C. Vervaet, "Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes," International Journal of Pharmaceutics, vol. 417, pp. 32-47, 2011.
[86] F. Tuinstra and J. L. Koenig, "Raman spectrum of graphite," The Journal of Chemical Physics, vol. 53, pp. 1126-1130, 1970.
[87] Y. Y. Wang, Z. H. Ni, T. Yu, Z. X. Shen, H. M. Wang, Y. H. Wu, et al., "Raman studies of monolayer graphene: the substrate effect," The Journal of Physical Chemistry C, vol. 112, pp. 10637-10640, 2008.
[88] C. Casiraghi, J. Robertson, and A. C. Ferrari, "Diamond-like carbon for data and beer storage," Materials Today, vol. 10, pp. 44-53, 2007.
[89] A. C. Ferrari and J. Robertson, "Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond," Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 362, pp. 2477-2512, 2004.
[90] K. E. Spear and J. P. Dismukes. Synthetic diamond: emerging CVD science and technology. New Jersey: John Wiley & Sons, 1994.
[91] D. Takagi, H. Hibino, S. Suzuki, Y. Kobayashi, and Y. Homma, "Carbon nanotube growth from semiconductor nanoparticles," Nano Letters, vol. 7, pp. 2272-2275, 2007.
[92] N. Shang, P. Papakonstantinou, P. Wang, A. Zakharov, U. Palnitkar, I. N. Lin, et al., "Self-assembled growth, microstructure, and field-emission high-performance of ultrathin diamond nanorods," ACS Nano, vol. 3, pp. 1032-1038, 2009.
[93] Y. Shibuta and S. Maruyama, "Molecular dynamics simulation of formation process of single-walled carbon nanotubes by CCVD method," Chemical Physics Letters, vol. 382, pp. 381-386, 2003.
[94] J. L. Qi, F. Zhang, X. Wang, L. X. Zhang, J. Cao, and J. C. Feng, "Effect of catalyst film thickness on the structures of vertically-oriented few-layer graphene grown by PECVD," RSC Advances, vol. 4, pp. 44434-44441, 2014.
[95] S. C. Sahoo, D. R. Mohapatra, H. J. Lee, S. M. Jejurikar, I. Kim, S. C. Lee, et al., "Carbon nanoflake growth from carbon nanotubes by hot filament chemical vapor deposition," Carbon, vol. 67, pp. 704-711, 2014.
[96] L. F. Chen, Z. G. Ji, Y. H. Mi, H. L. Ni, and H. F. Zhao, "Nonlinear characteristics of the Fowler–Nordheim plots of carbon nanotube field emission," Physica Scripta, vol. 82, p. 035602, 2010.
[97] L. Gautier, V. Le Borgne, N. Delegan, R. Pandiyan, and M. El Khakani, "Field electron emission enhancement of graphenated MWCNTs emitters following their decoration with Au nanoparticles by a pulsed laser ablation process," Nanotechnology, vol. 26, p. 045706, 2015.
[98] L. A. Gautier, V. Le Borgne, and M. A. El Khakani, "Field emission properties of graphenated multi-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition," Carbon, vol. 98, pp. 259-266, 2016.
[99] J. Palomino, D. Varshney, O. Resto, B. R. Weiner, and G. Morell, "Ultrananocrystalline Diamond-Decorated Silicon Nanowire Field Emitters," ACS Applied Materials & Interfaces, vol. 6, pp. 13815-13822, 2014.
[100] S. Lv, Z. Li, J. Liao, G. Wang, M. Li, and W. Miao, "Optimizing Field Emission Properties of the Hybrid Structures of Graphene Stretched on Patterned and Size-controllable SiNWs," Scientific Reports, vol. 5, 2015.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *