|
[1] M. Terrones, A. R. Botello-Méndez, J. Campos-Delgado, F. López-Urías, Y. I. Vega-Cantú, F. J. Rodríguez-Macías, et al., "Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications," Nano Today, vol. 5, pp. 351-372, 2010. [2] A. Karabutov, V. Frolov, and V. Konov, "Diamond/sp2-bonded carbon structures: quantum well field electron emission?," Diamond and Related Materials, vol. 10, pp. 840-846, 2001. [3] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, pp. 56-58, 1991. [4] M. Doytcheva, M. Kaiser, and N. De Jonge, "In situ transmission electron microscopy investigation of the structural changes in carbon nanotubes during electron emission at high currents," Nanotechnology, vol. 17, p. 3226, 2006. [5] 黃承均與黃淑娟, "石墨烯的發展與應用(上)," 工業材料雜誌, vol. 274, pp. 119-222, 2010. [6] L. Liao, H. Lu, M. Shuai, J. Li, Y. Liu, C. Liu, et al., "A novel gas sensor based on field ionization from ZnO nanowires: moderate working voltage and high stability," Nanotechnology, vol. 19, p. 175501, 2008. [7] Y. Li, Y. Sun, and J. Yeow, "Nanotube field electron emission: principles, development, and applications," Nanotechnology, vol. 26, p. 242001, 2015. [8] E. L. Murphy and R. Good Jr, "Thermionic emission, field emission, and the transition region," Physical Review, vol. 102, p. 1464, 1956. [9] S. Christov and C. Vodenicharov, "On the experimental proof of the general theory of electron emission from metals," Solid-State Electronics, vol. 11, pp. 757-766, 1968. [10] O. W. Richardson, "The electrical conductivity imparted to a vacuum by hot conductors," Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, pp. 497-549, 1903. [11] C. Crowell, "The Richardson constant for thermionic emission in Schottky barrier diodes," Solid-State Electronics, vol. 8, pp. 395-399, 1965. [12] M. Kiziroglou, X. Li, A. Zhukov, P. De Groot, and C. De Groot, "Thermionic field emission at electrodeposited Ni–Si Schottky barriers," Solid-State Electronics, vol. 52, pp. 1032-1038, 2008. [13] J. Orloff. Handbook of charged particle optics. New York: CRC Press Publishers, 2008. [14] K. Junker and K. Heinz, "Experimental examination of the field enhanced thermal emission of holes in CdS," Physica Status Solidi (a), vol. 21, pp. 451-456, 1974. [15] G. Fursey. Field Emission in Vacuum Microelectronics. New York: Kluwer Academic/Plenum Publishers, 2005. [16] R. H. Fowler and L. Nordheim, "Electron emission in intense electric fields," in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 119, pp. 173-181, 1928. [17] R. A. Millikan and C. C. Lauritsen, "Dependence of electron emission from metals upon field strengths and temperatures," Physical Review, vol. 33, p. 598, 1929. [18] J. He, P. Cutler, and N. Miskovsky, "Generalization of Fowler–Nordheim field emission theory for nonplanar metal emitters," Applied Physics Letters, vol. 59, pp. 1644-1646, 1991. [19] K. Jensen and E. Zaidman, "Field emission from an elliptical boss: Exact versus approximate treatments," Applied Physics Letters, vol. 63, pp. 702-704, 1993. [20] K. Jensen and E. Zaidman, "Field emission from an elliptical boss: Exact and approximate forms for area factors and currents," Journal of Vacuum Science & Technology B, vol. 12, pp. 776-780, 1994. [21] K. Jensen and E. Zaidman, "Analytic expressions for emission characteristics as a function of experimental parameters in sharp field emitter devices," Journal of Vacuum Science & Technology B, vol. 13, pp. 511-515, 1995. [22] T. Fisher, "Influence of nanoscale geometry on the thermodynamics of electron field emission," Applied Physics Letters, vol. 79, pp. 3699-3701, 2001. [23] T. Fisher and D. Walker, "Thermal and electrical energy transport and conversion in nanoscale electron field emission processes," Journal of Heat Transfer, vol. 124, pp. 954-962, 2002. [24] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, et al., "Scanning field emission from patterned carbon nanotube films," Applied Physics Letters, vol. 76, pp. 2071-2073, 2000. [25] J. S. Suh, K. S. Jeong, J. S. Lee, and I. Han, "Study of the field-screening effect of highly ordered carbon nanotube arrays," Applied Physics Letters, vol. 80, pp. 2392-2394, 2002. [26] R. Smith and S. Silva, "Maximizing the electron field emission performance of carbon nanotube arrays," Applied Physics Letters, vol. 94, p. 133104, 2009. [27] H. Kroto, J.R. Health, S.C. O’Brian, R.F. Curl, and R.E. Smalley, " C 60: buckminsterfullerene," Nature, vol. 381, p. 162, 1985. [28] Wikipedia contributors. "Fullerene." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 14 Jun. 2016. Web. 11 Jul. 2016. [29] W. Krätschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, "C60: a new form of carbon," Nature, vol. 347, pp. 354-358, 1990. [30] M. Dresselhaus, G. Dresselhaus, and R. Saito, "Physics of carbon nanotubes," Carbon, vol. 33, pp. 883-891, 1995. [31] A. Oberlin, M. Endo, and T. Koyama, "High resolution electron microscope observations of graphitized carbon fibers," Carbon, vol. 14, pp. 133-135, 1976. [32] J. Kong, A. M. Cassell, and H. Dai, "Chemical vapor deposition of methane for single-walled carbon nanotubes," Chemical Physics Letters, vol. 292, pp. 567-574, 1998. [33] H. Xiao. Introduction to semiconductor manufacturing technology. New Jersey: Prentice Hall Publishers, 2001. [34] M. Hiramatsu, T. Deguchi, H. Nagao, and M. Hori, "Aligned growth of single-walled and double-walled carbon nanotube films by control of catalyst preparation," Japanese Journal of Applied Physics, vol. 46, p. L303, 2007. [35] 徐逸明,化學氣相沉積法及電漿輔助化學氣相沉積法於低溫合成奈米碳管之研究,博士論文,國立成功大學化化學工程學系,台南,2001。 [36] J. Wilson, N. Scheerbaum, S. Karim, N. Polwart, P. John, Y. Fan, et al., "Low temperature plasma chemical vapour deposition of carbon nanotubes," Diamond and Related Materials, vol. 11, pp. 918-921, 2002. [37] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, et al., "Crystalline ropes of metallic carbon nanotubes," Science, vol. 273, pp. 483-487, 1996. [38] M. Kumar and Y. Ando, "Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production," Journal of Nanoscience and Nanotechnology, vol. 10, pp. 3739-3758, 2010. [39] X. Chen, R. Wang, J. Xu, and D. Yu, "TEM investigation on the growth mechanism of carbon nanotubes synthesized by hot-filament chemical vapor deposition," Micron, vol. 35, pp. 455-460, 2004. [40] Y. Saito, "Nanoparticles and filled nanocapsules," Carbon, vol. 33, pp. 979-988, 1995. [41] E. Kukovitsky, S. L'vov, and N. Sainov, "VLS-growth of carbon nanotubes from the vapor," Chemical Physics Letters, vol. 317, pp. 65-70, 2000. [42] J. Gavillet, A. Loiseau, C. Journet, F. Willaime, F. Ducastelle, and J. C. Charlier, "Root-growth mechanism for single-wall carbon nanotubes," Physical Review Letters, vol. 87, p. 275504, 2001. [43] J. P. Gore and A. Sane, "Flame synthesis of carbon nanotubes, Carbon nanotubes-synthesis, Characterization, Applications," InTech. Available from: http://www.intechopen.com/books/carbon-nanotubes-synthesis-characterization-applications/flame-synthesis-of-carbon-nanotubes. [44] Y. J. Huang, H. Y. Chang, H. C. Chang, Y. T. Shih, W. J. Su, C. H. Ciou, et al., "Field emission characteristics of vertically aligned carbon nanotubes with honeycomb configuration grown onto glass substrate with titanium coating," Materials Science and Engineering: B, vol. 182, pp. 14-20, 2014. [45] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, 2007. [46] J. C. Meyer, A. K. Geim, M. Katsnelson, K. Novoselov, T. Booth, and S. Roth, "The structure of suspended graphene sheets," Nature, vol. 446, pp. 60-63, 2007. [47] K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. A. Dubonos, et al., "Electric field effect in atomically thin carbon films," Science, vol. 306, pp. 666-669, 2004. [48] Thenanoage, 2016, July. Available: http://www.thenanoage.com/caebon.htm. [49] Quantumday, 2016, July. Available: http://www.quantumday.com/2012/07/new-process-in-isolating-graphene-leads.html. [50] R. Nair, P. Blake, A. Grigorenko, K. Novoselov, T. Booth, T. Stauber, et al., "Fine structure constant defines visual transparency of graphene," Science, vol. 320, pp. 1308-1308, 2008. [51] K. S. Novoselov, V. Fal, L. Colombo, P. Gellert, M. Schwab, and K. Kim, "A roadmap for graphene," Nature, vol. 490, pp. 192-200, 2012. [52] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, et al., "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature, vol. 457, pp. 706-710, 2009. [53] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, et al., "Large-area synthesis of high-quality and uniform graphene films on copper foils," Science, vol. 324, pp. 1312-1314, 2009. [54] F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, "Graphene photonics and optoelectronics," Nature Photonics, vol. 4, pp. 611-622, 2010. [55] L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. Zhou, "Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics," ACS Nano, vol. 4, pp. 2865-2873, 2010. [56] A. Kumar, A. Voevodin, D. Zemlyanov, D. Zakharov, and T. S. Fisher, "Rapid synthesis of few-layer graphene over Cu foil," Carbon, vol. 50, pp. 1546-1553, 2012. [57] D. Boyd, W. H. Lin, C. C. Hsu, M. Teague, C. C. Chen, Y. Y. Lo, et al., "Single-step deposition of high-mobility graphene at reduced temperatures," Nature Communications, vol. 6, 2015. [58] J. Robertson, G. Zhong, S. Esconjauregui, C. Zhang, and S. Hofmann, "Synthesis of carbon nanotubes and graphene for VLSI interconnects," Microelectronic Engineering, vol. 107, pp. 210-218, 2013. [59] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S. S. Pei, "Graphene segregated on Ni surfaces and transferred to insulators," Applied Physics Letters, vol. 93, p. 113103, 2008. [60] C. Wu, F. Li, Y. Zhang, and T. Guo, "Field emission from vertical graphene sheets formed by screen-printing technique," Vacuum, vol. 94, pp. 48-52, 2013. [61] A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. Van Tendeloo, et al., "Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition," Nanotechnology, vol. 19, p. 305604, 2008. [62] A. Malesevic, R. Kemps, A. Vanhulsel, M. P. Chowdhury, A. Volodin, and C. Van Haesendonck, "Field emission from vertically aligned few-layer graphene," Journal of Applied Physics, vol. 104, p. 084301, 2008. [63] W. Lei, C. Li, M. T. Cole, K. Qu, S. Ding, Y. Zhang, et al., "A graphene-based large area surface-conduction electron emission display," Carbon, vol. 56, pp. 255-263, 2013. [64] W. G. Eversole, US Patents No. 3030187 and No. 3030188. [65] J. C. Angus, H. A. Will, and W. S. Stanko, "Growth of diamond seed crystals by vapor deposition," Journal of Applied Physics, vol. 39, pp. 2915-2922, 1968. [66] S. Dolukhanyan, M. Nersesyan, A. Nalbandyan, I. Borovinskaya, and A. Merzhanov, "Combustion of transition metals in hydrogen," Doklady Akademii Nauk SSSR, Vol. 231, pp. 675-678, 1976. [67] Wikipedia contributors. "Carbon." Wikipedia, The Free Encyclopedia, July, 2016. [68] R. F. Davis. Diamond films and coatings. Park Ridge: William Andrew, 1993. [69] S. Arora and V. Vankar, "Field emission characteristics of microcrystalline diamond films: Effect of surface coverage and thickness," Thin Solid Films, vol. 515, pp. 1963-1969, 2006. [70] D. Pradhan, Y. Lee, C. Pao, W. Pong, and I. Lin, "Low temperature growth of ultrananocrystalline diamond film and its field emission properties," Diamond and Related Materials, vol. 15, pp. 2001-2005, 2006. [71] 黃烜君,以多孔性氧化鋁模板製備奈米鑽石針尖場發射特性之研究,碩士論文,國立臺灣海洋大學機械與機電工程學系,基隆,2008. [72] 曾柏棠,鑽石薄膜複合垂直寡層石墨之場發射特性研究,碩士論文,國立清華大學動力機械工程學系,新竹,2015。 [73] P. H. Tsai and H. Y. Tsai, "Fabrication and field emission characteristic of microcrystalline diamond/carbon nanotube double-layered pyramid arrays," Thin Solid Films, vol. 584, pp. 330-335, 2015. [74] L. Zeng, D. Lei, W. Wang, J. Liang, Z. Wang, N. Yao, et al., "Preparation of carbon nanosheets deposited on carbon nanotubes by microwave plasma-enhanced chemical vapor deposition method," Applied Surface Science, vol. 254, pp. 1700-1704, 2008. [75] J. Qi, X. Wang, W. Zheng, H. Tian, C. Liu, Y. Lu, et al., "Effects of total CH4/Ar gas pressure on the structures and field electron emission properties of carbon nanomaterials grown by plasma-enhanced chemical vapor deposition," Applied Surface Science, vol. 256, pp. 1542-1547, 2009. [76] J. H. Deng, R. T. Zheng, Y. Zhao, and G. A. Cheng, "Vapor–solid growth of few-layer graphene using radio frequency sputtering deposition and its application on field emission," ACS Nano, vol. 6, pp. 3727-3733, 2012. [77] J. Liu, B. Zeng, X. Wang, W. Wang, and H. Shi, "One-step growth of vertical graphene sheets on carbon nanotubes and their field emission properties," Applied Physics Letters, vol. 103, p. 053105, 2013. [78] J. H. Deng, G. A. Cheng, R. T. Zheng, B. Yu, G. Z. Li, X. G. Hou, et al., "Catalyst-free, self-assembly, and controllable synthesis of graphene flake–carbon nanotube composites for high-performance field emission," Carbon, vol. 67, pp. 525-533, 2014. [79] Z. Yang, Q. Zhao, Y. Ou, W. Wang, H. Li, and D. Yu, "Enhanced field emission from large scale uniform monolayer graphene supported by well-aligned ZnO nanowire arrays," Applied Physics Letters, vol. 101, p. 173107, 2012. [80] J. M. Bonard, J. P. Salvetat, T. Stöckli, W. A. De Heer, L. Forró, and A. Châtelain, "Field emission from single-wall carbon nanotube films," Applied Physics Letters, vol. 73, p. 918, 1998. [81] J. M. Bonard, F. Maier, T. Stöckli, A. Chaˆtelain, W. A. de Heer, J. P. Salvetat, et al., "Field emission properties of multiwalled carbon nanotubes," Ultramicroscopy, vol. 73, pp. 7-15, 1998. [82] Y. C. Choi, Y. M. Shin, D. J. Bae, S. C. Lim, Y. H. Lee, and B. S. Lee, "Patterned growth and field emission properties of vertically aligned carbon nanotubes," Diamond and Related Materials, vol. 10, pp. 1457-1464, 2001. [83] J. Zhang, C. Yang, W. Yang, T. Feng, X. Wang, and X. Liu, "Appearance of a knee on the Fowler–Nordheim plot of carbon nanotubes on a substrate," Solid State Communications, vol. 138, pp. 13-16, 2006. [84] Y. Shen, S. Deng, Y. Zhang, F. Liu, J. Chen, and N. Xu, "Highly conductive vertically aligned molybdenum nanowalls and their field emission property," Nanoscale Research Letters, vol. 7, p. 1, 2012. [85] T. De Beer, A. Burggraeve, M. Fonteyne, L. Saerens, J. P. Remon, and C. Vervaet, "Near infrared and Raman spectroscopy for the in-process monitoring of pharmaceutical production processes," International Journal of Pharmaceutics, vol. 417, pp. 32-47, 2011. [86] F. Tuinstra and J. L. Koenig, "Raman spectrum of graphite," The Journal of Chemical Physics, vol. 53, pp. 1126-1130, 1970. [87] Y. Y. Wang, Z. H. Ni, T. Yu, Z. X. Shen, H. M. Wang, Y. H. Wu, et al., "Raman studies of monolayer graphene: the substrate effect," The Journal of Physical Chemistry C, vol. 112, pp. 10637-10640, 2008. [88] C. Casiraghi, J. Robertson, and A. C. Ferrari, "Diamond-like carbon for data and beer storage," Materials Today, vol. 10, pp. 44-53, 2007. [89] A. C. Ferrari and J. Robertson, "Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond," Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 362, pp. 2477-2512, 2004. [90] K. E. Spear and J. P. Dismukes. Synthetic diamond: emerging CVD science and technology. New Jersey: John Wiley & Sons, 1994. [91] D. Takagi, H. Hibino, S. Suzuki, Y. Kobayashi, and Y. Homma, "Carbon nanotube growth from semiconductor nanoparticles," Nano Letters, vol. 7, pp. 2272-2275, 2007. [92] N. Shang, P. Papakonstantinou, P. Wang, A. Zakharov, U. Palnitkar, I. N. Lin, et al., "Self-assembled growth, microstructure, and field-emission high-performance of ultrathin diamond nanorods," ACS Nano, vol. 3, pp. 1032-1038, 2009. [93] Y. Shibuta and S. Maruyama, "Molecular dynamics simulation of formation process of single-walled carbon nanotubes by CCVD method," Chemical Physics Letters, vol. 382, pp. 381-386, 2003. [94] J. L. Qi, F. Zhang, X. Wang, L. X. Zhang, J. Cao, and J. C. Feng, "Effect of catalyst film thickness on the structures of vertically-oriented few-layer graphene grown by PECVD," RSC Advances, vol. 4, pp. 44434-44441, 2014. [95] S. C. Sahoo, D. R. Mohapatra, H. J. Lee, S. M. Jejurikar, I. Kim, S. C. Lee, et al., "Carbon nanoflake growth from carbon nanotubes by hot filament chemical vapor deposition," Carbon, vol. 67, pp. 704-711, 2014. [96] L. F. Chen, Z. G. Ji, Y. H. Mi, H. L. Ni, and H. F. Zhao, "Nonlinear characteristics of the Fowler–Nordheim plots of carbon nanotube field emission," Physica Scripta, vol. 82, p. 035602, 2010. [97] L. Gautier, V. Le Borgne, N. Delegan, R. Pandiyan, and M. El Khakani, "Field electron emission enhancement of graphenated MWCNTs emitters following their decoration with Au nanoparticles by a pulsed laser ablation process," Nanotechnology, vol. 26, p. 045706, 2015. [98] L. A. Gautier, V. Le Borgne, and M. A. El Khakani, "Field emission properties of graphenated multi-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition," Carbon, vol. 98, pp. 259-266, 2016. [99] J. Palomino, D. Varshney, O. Resto, B. R. Weiner, and G. Morell, "Ultrananocrystalline Diamond-Decorated Silicon Nanowire Field Emitters," ACS Applied Materials & Interfaces, vol. 6, pp. 13815-13822, 2014. [100] S. Lv, Z. Li, J. Liao, G. Wang, M. Li, and W. Miao, "Optimizing Field Emission Properties of the Hybrid Structures of Graphene Stretched on Patterned and Size-controllable SiNWs," Scientific Reports, vol. 5, 2015.
|