帳號:guest(3.133.158.95)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):何承豫
作者(外文):Ho, Cheng Yu
論文名稱(中文):CMOS-MEMS 陀螺儀的設計與實現
論文名稱(外文):Design and Implementation of CMOS-MEMS Vibrating gyroscopes
指導教授(中文):方維倫
指導教授(外文):Fang, Weileun
口試委員(中文):李昇憲
蔡明翰
口試委員(外文):Li, Sheng Shian
Tsai, Ming Han
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:103033557
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:82
中文關鍵詞:CMOS-MEMS慣性感測器共振式陀螺儀
外文關鍵詞:CMOS-MEMSInertia SensorVibratory gyroscope
相關次數:
  • 推薦推薦:0
  • 點閱點閱:476
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究使用TSMC 0.18μm 1P6M 電路標準製程平台實現一微機電陀螺儀。而使用CMOS平台所製作的微機電陀螺儀,將會面臨在結構懸浮後,殘餘應力翹曲的問題,因此本研究期望透過整合現有文獻中,在結構設計上削減殘餘應力影響的辦法,包含對稱薄膜堆疊與純二氧化矽堆疊等,以期在不改變標準的電路製程參數下,實現一低應力翹曲結構的微機電陀螺儀,並同時仍保有CMOS平台的各式優點,如良好的繞線與線寬定義能力、可與電路及其他類型感測器整合達到單石化(Monolithic)等優勢。至於陀螺儀本身低結構敏感度的缺點,則透過CMOS製程平台小線寬的特性進行補償。
This study implements a MEMS gyroscope by TSMC 0.18μm 1P6M standard CMOS process. The structure which fabricates by this process must encounter the problem of residual stress warping. In order to reduce the deformation of the residual stress, this study integrates several structure design method in existing literatures. The design methods which be implemented in this research including symmetric stack structure and pure oxide structure are expected to achieve a structure of low residual stress warping. By this way, the fabrication parameter of this standard platform would not be modified to fit the demand of structure and the advantage of this platform would also be kept include monolithic integration capability and the good ability of electrical routing. However, for the gyroscope, the problem of low signal response may have chance to be compensated by the advantage of this platform which could make sub-micron sensing gaps.
目錄
中文摘要 I
Abstract II
目錄 III
圖目錄 V
第一章 緒論 1
1-1 前言 1
1-2 規格參數 4
1-3 文獻回顧 6
1-4 研究動機 14
1-5 全文架構 15
第二章 理論分析 24
2-1 原理簡介 24
2-2 機械動態系統分析 26
2-3 電容式致動與感測 29
2-4 訊號輸出 35
第三章 元件設計與模擬 39
3-1 結構設計 39
3-2 結構模擬結果 41
3-3 讀取電路設計與模擬結果 42
3-5 規格預測 43
第四章 製程結果與量測 49
4-1 製程流程與結果 49
4-2 結構翹曲量測 50
4-3 結構模態量測 51
4-4 感測電路響應量測 52
4-5 吸合(Pull-in)電壓量測 53
4-6 角速度訊號量測 53
第五章 結論與未來工作 70
5-1 結論 70
5-2 未來工作 70
5-3 真空模組 71
5-4 雙質量塊結構設計 72
參考資料 75

[1]Johann G.-F. Bohnenberger, “Beschreibung einer Maschine zur Erläuterung der Gesetze der Umdrehung der Erde um ihre Axe, und der Veränderung der Lage der letzteren,” Tübinger Blätter für Naturwissenschaften und Arzeikunde, vol. 3, pp. 72-83, 1817.
[2]L. Foucault. ”Sur les phénomènes d’orientation des corps tournants entraînés par un axe fixe à la surface de la terre ─ Nouveaux signes sensibles du mouvement diurne,”Comptes rendus hebdomadaires des séances de l’Académie des Sciences (Paris), vol.35, pp. 424-427, 1852.
[3]C. Acar and A.-M. Shkel, MEMS Vibratory Gyroscopes:Structural Approaches to Improve Robustness. 1st Ed., New York, NY. Springer, 2008.
[4]N. Yazdi, F. Ayazi, and K. Najafi. ”Micromachined Inertial Sensors,” Proceedings of the IEEE, vol. 86.8, pp. 1640-1659, August, 1998.
[5]A. Sharma, M.-F. Zaman, and F. Ayazi. ”A sub-0.2°/hr bias drift micromechanicalsilicon gyroscope with automatic CMOS mode -matching,” IEEE Journal of Solid-State Circuits, vol. 77.5, pp. 1593-1608, 2009.
[6]IEEE Standard Specification Format Guide and Test Procedure for Coriolis Vibratory Gyros, IEEE Std., pp. 1-69, 2004.
[7]S.-W. Yoon, S. Lee and K. Najafi. “Vibration-induced errors in MEMS tuning fork gyroscope,” Sensor and Actuators A:Physical, vol. 180, pp. 32-44, 2012
[8]A.-M. Shkel. “Type I and type II micromachined vibrator gyroscopes,“ IEEE/ION Position Location and Navigation Symposium, San Diego, CA, USA, 2006, pp. 586-593.
[9]C.-C. Painter, and A.-M. Shkel. (2003)”Active structural error suppression in MEMS vibratory rate integrating gyroscopes.” IEEE Sensors Journal, vol. 3.5, pp. 595-606, 2003.
[10] J. Cho, J.-A. Gregory, and K. Najafi, “Single-crystal-silicon vibratory cylinderical rate integrating gyroscope (CING),” The 16th International Solid-State Sensors, Actuators and Microsystems Conference, June, 2011, pp. 2813-2816.
[11] J. Bernstein, S. Cho, A.-T. King, A. Kourepenis, P. Maciel, and M. Weinberg, ”A micromachined comb-drive tuning fork rate gyroscope,” Proceedings An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems In Micro Electro Mechanical Systems, Feb., 1993, pp. 143-148
[12] J.-Y. Cho, High-performance Micromachined Vibratory Rate- and Rate-integrating Gyroscopes, Ph.D. Thesis, Electrical Engineering, University of Michigan, 2012.
[13]S.-E. Alper and T. Akin. ” a singel-crystal silicon symmetrical and decouple MEMS gyroscope on an insulating substrate,” Journal of Microelectromechanical Systems, vol. 4, pp. 707-717, 2005.
[14]A. Sharma, F.-M. Zaman, B.-V. Amini and F. Ayazi. ”a high-Q in-plane SOI tuning fork gyroscope,” IEEE Sensors Journal, vol. 1, pp. 467- 470, 2004.
[15]S.-E. Alper, Y. Temiz, and T. Akin. "A compact angular rate sensor system using a fully decoupled silicon-on-glass MEMS gyroscope," Journal of Microelectromechanical Systems, vol. 17.6 , pp. 1418-1429, June, 2008.
[16] M.-F. Zaman, A. Sharma, Z. Hao, and F. Ayazi. “A mode-matched silicon-yaw tuning-fork gyroscope with subdegree-per-hour allan deviation bias instability.” Journal of Microelectromechanical Systems, vol. 17.6, pp.1526-1536, 2008.
[17] S. Park, and R. Horowitz, “Adaptive control for the conventional mode of operation of MEMS gyroscopes,” Journal of Microelectromechanical Systems, vol. 12.1, pp. 101-108, 2003.
[18]S. Sung, W.-T. Sung, C. Kim, S. Yun, and Y.-J. Lee, “On the mode- matched control of MEMS vibratory gyroscope via phase-domain analysis and design,” IEEE/ASME Transactions on Mechatronics, vol. 14.4, pp. 446-455, 2009.
[19]S.-W. Yoon, S. Lee, and K.l Najafi. "Vibration sensitivity analysis of MEMS vibratory ring gyroscopes," Sensors and Actuators A: Physical 171.2, pp.163-177, 2011.
[20]F. Ayazi and K. Najafi. ”A HARPSS Polysilicon vibrating ring gyroscope,” Journal of Microelectromechanical System, vol. 10.2, pp. 169-179, 2001.
[21]H. Johari and F. Ayazi. "Capacitive bulk acoustic wave silicon disk gyroscopes," IEEE international Electron Devices Meeting, 2006, pp. 1-4.
[22]J.-Y. Cho, J.-K. Woo, J. Yan, R.-L. Peterson, and K. Najafi. ”Fused-silica micro birdbath resonator gyroscope (μ-BRG),” Journal of Microelectromechanical System, vol. 23.1, pp. 66-77, Dec., 2013.
[23]S. Zotov, A. Trusov, and A.-M. Shkel. "Three-dimensional spherical shell resonator gyroscope fabricated using wafer-scale glassblowing," Journal of Microelectromechanical Systems, vol. 21.3, pp. 509-510, March, 2012.
[24] M. F. Zaman, A. Sharma, and F. Ayazi. "The resonating star gyroscope: A novel multiple-shell silicon gyroscope with sub-5 deg/hr allan deviation bias instability," IEEE Sensors Journal, vol. 9.6, pp. 616-624, June. 2009.
[25] M.-H. Tsai, C.-M. Sun, Y.-C. Liu, C. Wang, and W. Fang. “Design and application of a metal wet-etching post-process for the improvement of CMOS-MEMS capacitive sensors,” Journal of Micromechanics and Microengineering, vol. 19.10, pp. 1-7, 2009.
[26] J. Wu, G.-K. Fedder, and L.-R. Carley, “A low-noise low-offset capacitive sensing amplifier for a 50-μg/√ Hz monolithic CMOS MEMS accelerometer,” IEEE Journal of Solid-State Circuits, vol. 39.5, pp. 722-730, 2004
[27]H. Xie and G.-K. Fedder, “A CMOS-MEMS lateral-axis gyroscope,” Proc. 14th IEEE Int. Conf. Microelectromechanical Systems, Interlaken, Switzerland, Jan., 2001, pp. 162–165
[28]H. Luo, X. Zhu, H. Lakdawala, L.-R. Carley, and G.-K. Fedder. "A copper CMOS-MEMS z-axis gyroscope," The 15th IEEE International Conference on Micro Electro Mechanical Systems, 2002, pp. 631-634.
[29]H. Xie and G.- K. Fedder. “Fabrication, Characterization, and Analysis of a DRIE CMOSMEMS Gyroscope,” IEEE Sensors Journal, vol. 3.5, 2003, pp. 622-631.
[30] H. Luo, G. Zhang, L.-R. Carley, and G.-K. Fedder. “A post-CMOS micromachined lateral accelerometer,” Journal of Microelectromechanical systems, vol. 11.3, pp. 188-195, 2002.
[31]Y.-J. Huang, T.-L. Chang, and H.-P. Chou. "Study of symmetric microstructures for CMOS multilayer residual stress," Sensors and Actuators A: Physical, vol. 150.2, pp. 237-242, 2009.
[32] T.-H. Yen, M.-H. Tsai, C.-I. Chang, Y.-C. Liu, S.-S. Li, R. Chen, J.- C. Chiou and W. Fang. “Improvement of CMOS-MEMS accelerometer using the symmetric layers stacking design.” IEEE Sensors, Oct., 2011, pp. 145-148.
[33]Y.-C. Liu, M.-H. Tsai, and W. Fang. "Pure oxide structure for temperature stabilization and performance enhancement of CMOS- MEMS accelerometer," the 25th IEEE International Conference on Micro Electro Mechanical Systems, 2012, pp. 591-594.
[34]W. Geiger, B. Folkmer, J. Merz, H. Sandmaier, and W. Lang. ”A new silicon rate gyroscope,” Sensors and Actuators A: Physical, vol. 73.1, pp. 45-51, 1999
[35]W. Geiger, J. Merz, T. Fischer, B. Folkmer, H. Sandmaier, and W. Lang. “The silicon angular rate sensor system DAVED,” Sensors and Actuators A: Physical, vol. 84.3, pp. 280-284, 2000
[36]W. Geiger, W.-U. Butt, A. Gaisser, J. Frech, M. Braxmaier, T. Link, A. Kohne, P. Nommemsen, H. Sandmaier, and W. Lang, “Decoupled microgyros and the design principle DAVED”.Sensors and Actuators A: Physical, vol. 95.2, pp. 239-249, 2002
[37] C. Acar and A.-M. Shkel, "Structurally decoupled micromachined gyroscopes with post-release capacitance enhancement." Journal of Micromechanics and Microengineering vol. 15.5, pp. 1092-1101, 2005.
[38]S.-E. Alper, and T. Akin, “A symmetric surface micromachined gyroscope with decoupled oscillation modes,” Sensors and Actuators A, vol. 97, pp. 347-358, 2002.
[39]S.-E. Alper, K.-M. Silay and T. Akin. “A low-cost rate-grade nickel microgyroscope,” Sensors and Actuators A, vol. 132, pp.171-181, 2006
[40]M. Palaniapan, R.-T. Howe, and J. Yasaitis. "Performance comparison of integrated Z-axis frame microgyroscopes," the 16th IEEE International Conference on Micro Electro Mechanical Systems, Kyoto, 2003, pp. 482-485 .
[41]M. Palaniapan, R.-T. Howe, and J. Yasaitis. “Integrated surface- micromachined z-axis frame microgyroscope,” in Proc. IEDM Digest. Int. Electron Devices Meeting, Dec., 2002, pp. 203–206
[42]S.-E. Alper, Y. Temiz, and T. Akin. "A compact angular rate sensor system using a fully decoupled silicon-on-glass MEMS gyroscope." Journal of Microelectromechanical systems, vol. 17.6, pp. 1418-1429, 2008.
[43]F.-Y Lee, K.-C. Liang, E. Cheng, S.-S. Li, and W. Fang. ”Acceleration-insensitive fully-decoupled tuning fork (FDTF) MEMS vibratory gyroscope with 1°/HR BIAS instability.” The IEEE 29th IEEE International Conference on Micro Electro Mechanical Systems, Jan., 2016, pp. 946-949.
[44]T. Juneau, A.-P. Pisano, and J.-H. Smith. “Dual axis operation of a micromachined rate gyroscope,” The International IEEE Conference on Solid State Sensors and Actuators, June, 1997, pp. 883-886.
[45] B. Lee, S. Seok, and K. Chun, “A study on wafer level vacuum packaging for MEMS devices,” Journal of micromechanics and microengineering, vol.13.5, pp. 663-669, 2003.
[46]C. Guo, E. Tatar, and G.-K. Fedder. "Large-displacement parametric resonance using a shaped comb drive," the 26th IEEE International Conference on Micro Electro Mechanical Systems, 2013, pp.173-176.
[47]R.-D. Blevins, Formulas for Natural Frequency and Mode Shape, Krieger Pub Co., 1995.
[48] K. Liu, W. Zhang, W. Chen, K Li, F. Dai, F. Cui, X. Wu, G. Ma and Q. Xiao. “The development of micro-gyroscope technology,” J. Micromech. Microeng., vol. 19, pp. 1–29, 2009.
[49]J. Ren, Design and implementation of MEMS Vibratory Gyroscope, M.E. thesis, National Tsing Hua University (ROC), 2015
[50] C.-O. Chang, G.-E, Chang, C.-S. Chou, W.-T.C. Chien, and P.-C. Chen, “In-plane free vibration of a single-crystal silicon ring”, International Journal of Solids and Structures, vol. 45.24, pp. 6114-6132, 2008.
[51]J. Ren, C.-Y. Liu, M.-H. Li, C.-C. Chen, C.-Y. Chen, C.-S. Li, S.-S. Li "A mode-matching 130-kHz ring-coupled gyroscope with 225 ppm initial driving/sensing mode frequency splitting." Transducers, 2015, pp. 1057-1060.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *