|
[1] 許明發 and 郭文雄, 1998, 複合材料, 高立圖書有限公司, 台北市. [2] 張豐志, 2003, 應用高分子手冊, 五南圖書出版股份有限公司, 台北市. [3] Iijima, S., 1991, "Helical microtubules of graphitic carbon," Nature, 354(6348), pp. 56-58. [4] Ruoff, R. S. and Lorents, D. C., 1995, "Mechanical and thermal properties of carbon nanotubes," Carbon, 33(7), pp. 925-930. [5] Treacy, M. M. J., Ebbesen, T. W. and Gibson, J. M., 1996, "Exceptionally high Young's modulus observed for individual carbon nanotubes," Nature, 381(6584), pp. 678-680. [6] Ebbesen, T. W., Lezec, H. J., Hiura, H., Bennett, J. W., Ghaemi, H. F. and Thio, T., 1996, "Electrical conductivity of individual carbon nanotubes," Nature, 382(6586), pp. 54-56. [7] Pop, E., Mann, D., Wang, Q., Goodson, K. and Dai, H., 2006, "Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature," Nano Letters, 6(1), pp. 96-100. [8] 黃淑娟, 2011, "新碳材時代-從奈米碳管到石墨烯," 工業材料雜誌. [9] Geim, A. K. and Novoselov, K. S., 2007, "The rise of graphene," Nat Mater, 6(3), pp. 183-191. [10] Lee, C., Wei, X., Kysar, J. W. and Hone, J., 2008, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science, 321(5887), pp. 385-388. [11] Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F. and Lau, C. N., 2008, "Superior Thermal Conductivity of Single-Layer Graphene," Nano Letters, 8(3), pp. 902-907. [12] Riccardi, C. C. and Williams, R. J. J., 1986, "A kinetic scheme for an amine-epoxy reaction with simultaneous etherification," Journal of Applied Polymer Science, 32(2), pp. 3445-3456. [13] 王國書, 2007, "奈米碳管/高分子預浸材積層板複合材料之機械與電性質研究," 碩士, 國立清華大學, 新竹市. [14] Yeh, M.-K., Hsieh, T.-H. and Tai, N.-H., 2008, "Fabrication and mechanical properties of multi-walled carbon nanotubes/epoxy nanocomposites," Materials Science and Engineering: A, 483–484, pp. 289-292. [15] Yu, N., Zhang, Z. H. and He, S. Y., 2008, "Fracture toughness and fatigue life of MWCNT/epoxy composites," Materials Science and Engineering: A, 494(1–2), pp. 380-384. [16] Biercuk, M. J., Llaguno, M. C., Radosavljevic, M., Hyun, J. K., Johnson, A. T. and Fischer, J. E., 2002, "Carbon nanotube composites for thermal management," Applied Physics Letters, 80(15), pp. 2767-2769. [17] Vahedi, F., Shahverdi, H. R., Shokrieh, M. M. and Esmkhani, M., 2014, "Effects of carbon nanotube content on the mechanical and electrical properties of epoxy-based composites," New Carbon Materials, 29(6), pp. 419-425. [18] Prolongo, S. G., Jiménez-Suárez, A., Moriche, R. and Ureña, A., 2014, "Graphene nanoplatelets thickness and lateral size influence on the morphology and behavior of epoxy composites," European Polymer Journal, 53, pp. 292-301. [19] Shen, X.-J., Liu, Y., Xiao, H.-M., Feng, Q.-P., Yu, Z.-Z. and Fu, S.-Y., 2012, "The reinforcing effect of graphene nanosheets on the cryogenic mechanical properties of epoxy resins," Composites Science and Technology, 72(13), pp. 1581-1587. [20] Tang, L.-C., Wan, Y.-J., Yan, D., Pei, Y.-B., Zhao, L., Li, Y.-B., Wu, L.-B., Jiang, J.-X. and Lai, G.-Q., 2013, "The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites," Carbon, 60, pp. 16-27. [21] Wang, F., Drzal, L., Qin, Y. and Huang, Z., 2015, "Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites," J Mater Sci, 50(3), pp. 1082-1093. [22] 游俊盟, 2005, "馬來醯胺-氧代氮代苯并環己烷之合成、聚合及硬化樹脂研究," 碩士, 中原大學, 桃園縣. [23] Holly, F. W. and Cope, A. C., 1944, "Condensation Products of Aldehydes and Ketones with o-Aminobenzyl Alcohol and o-Hydroxybenzylamine," Journal of the American Chemical Society, 66(11), pp. 1875-1879. [24] Shen, S. B. and Ishida, H., 1996, "Development and characterization of high-performance polybenzoxazine composites," Polymer Composites, 17(5), pp. 710-719. [25] Ishida, H. and Low, H. Y., 1997, "A Study on the Volumetric Expansion of Benzoxazine-Based Phenolic Resin," Macromolecules, 30(4), pp. 1099-1106. [26] Ishida, H. and Rodriguez, Y., 1995, "Curing kinetics of a new benzoxazine-based phenolic resin by differential scanning calorimetry," Polymer, 36(16), pp. 3151-3158. [27] 廖進彬, 劉胭芝, 高健 and 蔡淑容, 2013, "苯並噁嗪樹脂改性研究," packaging journal, 5(3), pp. 36-40. [28] Roger, T., K., R. and Tim, T., "Polybenzoxazine: New Chemistry," Huntsmen Co. [29] Kiskan, B., Ghosh, N. N. and Yagci, Y., 2011, "Polybenzoxazine-based composites as high-performance materials," Polymer International, 60(2), pp. 167-177. [30] Ishida, H. and Allen, D. J., 1996, "Physical and mechanical characterization of near-zero shrinkage polybenzoxazines," Journal of Polymer Science Part B: Polymer Physics, 34(6), pp. 1019-1030. [31] Rao, B. S., Rajavardhana Reddy, K., Pathak, S. K. and Pasala, A. R., 2005, "Benzoxazine–epoxy copolymers: effect of molecular weight and crosslinking on thermal and viscoelastic properties," Polymer International, 54(10), pp. 1371-1376. [32] Ishida, H. and Ohba, S., 2006, "Thermal analysis and mechanical characterization of maleimide-functionalized benzoxazine/epoxy copolymers," Journal of Applied Polymer Science, 101(3), pp. 1670-1677. [33] Agag, T. and Takeichi, T., 2000, "Polybenzoxazine–montmorillonite hybrid nanocomposites: synthesis and characterization," Polymer, 41(19), pp. 7083-7090. [34] Chen, Q., Xu, R. and Yu, D., 2006, "Multiwalled carbon nanotube/polybenzoxazine nanocomposites: Preparation, characterization and properties," Polymer, 47(22), pp. 7711-7719. [35] Kaleemullah, M., Khan, S. U. and Kim, J.-K., 2012, "Effect of surfactant treatment on thermal stability and mechanical properties of CNT/polybenzoxazine nanocomposites," Composites Science and Technology, 72(16), pp. 1968-1976. [36] Zeng, M., Wang, J., Li, R., Liu, J., Chen, W., Xu, Q. and Gu, Y., 2013, "The curing behavior and thermal property of graphene oxide/benzoxazine nanocomposites," Polymer, 54(12), pp. 3107-3116. [37] An, J.-E. and Jeong, Y. G., 2013, "Structure and electric heating performance of graphene/epoxy composite films," European Polymer Journal, 49(6), pp. 1322-1330. [38] Ghaleb, Z. A., Mariatti, M. and Ariff, Z. M., 2014, "Properties of graphene nanopowder and multi-walled carbon nanotube-filled epoxy thin-film nanocomposites for electronic applications: The effect of sonication time and filler loading," Composites Part A: Applied Science and Manufacturing, 58, pp. 77-83. [39] Chen, W., Tao, X., Xue, P. and Cheng, X., 2005, "Enhanced mechanical properties and morphological characterizations of poly(vinyl alcohol)–carbon nanotube composite films," Applied Surface Science, 252(5), pp. 1404-1409. [40] Jiang, Q., Wang, X., Zhu, Y., Hui, D. and Qiu, Y., 2014, "Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites," Composites Part B: Engineering, 56, pp. 408-412. [41] Saw, L. N., Mariatti, M., Azura, A. R., Azizan, A. and Kim, J. K., 2012, "Transparent, electrically conductive and flexible films made from multiwalled carbon nanotube/epoxy composites," Composites Part B: Engineering, 43(8), pp. 2973-2979. [42] 吳文演, 2003, "碳素纖維之研製與應用," 台灣人纖工業會訊, 台灣科技大學. [43] Coleman, J. N., Khan, U. and Gun'ko, Y. K., 2006, "Mechanical Reinforcement of Polymers Using Carbon Nanotubes," Advanced Materials, 18(6), pp. 689-706. [44] Kim, C.-u., Kim, S.-j., Park, J.-c. and Song, J.-i., 2015, "Fabrication and Evaluation of Mechanical Properties of CF/GNP Composites," Procedia Manufacturing, 2, pp. 368-373. [45] Glaskova-Kuzmina, T., Aniskevich, A., Zarrelli, M., Martone, A. and Giordano, M., 2014, "Effect of filler on the creep characteristics of epoxy and epoxy-based CFRPs containing multi-walled carbon nanotubes," Composites Science and Technology, 100, pp. 198-203. [46] Reifsnider, K., Henneke, E., Stinchcomb, W. and Duke, J., 1983, "Damage mechanics and NDE of composite laminates," Mechanics of composite materials: Recent advances, pp. 399-420. [47] Paris, P. and Erdogan, F., 1963, "A Critical Analysis of Crack Propagation Laws," Journal of Basic Engineering, 85(4), pp. 528-533. [48] Hwang, W. and Han, K. S., 1986, "Fatigue of Composites—Fatigue Modulus Concept and Life Prediction," Journal of Composite Materials, 20(2), pp. 154-165. [49] ASTM D638-10, Standard Test Method for Tensile Properties of Plastics, Annual Book of ASTM Standards. [50] ASTM D882-02, Standard Test Method for Tensile Properties of Thin Plastic Sheeting, Annual Book of ASTM Standards. [51] 2014, ASTM D3039/D3039m-14, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, Annual Book of ASTM Standards. [52] 2010, ASTM D790-10, Flexural Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, Annual Book of ASTM Standards. [53] 2010, ASTM D256-10, Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastic, Annual Book of ASTM Standards. [54] 2006, ASTM D2344/D2344m-00, Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates, Annual Book of ASTM Standards. [55] 2007, ASTM D3479/D3479m-06, Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composite Materials. [56] 2004, ASTM E739-91, Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (Ε-N) Fatigue Data.
|