帳號:guest(3.21.104.183)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):詹智如
作者(外文):Chan, Chih Ju
論文名稱(中文):發光二極體加速老化試驗之溫度與電流加速因子分析
論文名稱(外文):Current and Temperature Acceleration Factor on Accelerated Aging Test for Light Emitting Diodes
指導教授(中文):江國寧
指導教授(外文):Chiang, Kuo-Ning
口試委員(中文):鄭仙志
李昌駿
口試委員(外文):Zheng, Xian-Zhi
Lee, Chang-Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:103033554
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:95
中文關鍵詞:高功率發光二極體加速老化壽命試驗加速因子
外文關鍵詞:Light emitting diode (LED)Accelerated aging testAcceleration factor (AF)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:75
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年全球暖化的問題日益嚴重,具有低汙染、省電與使用壽命長等優點的發光二極體,逐漸取代傳統照明設備。目前發光二極體產業界普遍使用IES LM80-08規範來量測產品的流明維持率,而此規範所需的測試時間過於冗長,嚴重影響產品上市時程,造成產業發展受到限制。
許多應力形式皆會影響發光二極體的壽命,例如溫度應力、電流應力與濕度應力等。在之前的研究中已進行純溫度應力對發光二極體的加速老化試驗,並成功地推導出在純溫度負載下的壽命預估模型,然電流負載是否是引響發光二極體老化的重要因子亟需探討。因此在本研究中,將提出在相同界面溫度應力但輸入不同電流應力大小的加速老化試驗。本研究目的為(一)在相同界面溫度條件下,探討不同電流負載之加速老化試驗所造成發光二極體的光衰情形,(二)建立發光二極體的光衰模型,提供準確的壽命預估,(三)並找出溫度與電流應力在光衰試驗中的加速因子,(四)提出有效縮短測試時間的測試方法,以縮短發光二極體之研發時程。
本研究初步工作利用之前研究已驗證過的有限單元模型與熱阻計算預估晶片接面溫度,找出加速老化試驗的環境溫度條件,並利用順向偏壓量測實驗加以驗證。由電流溫度加速老化試驗結果發現,在本研究中的試驗條件設定下,相同晶片接面溫度不同電流負載所造成的試片光衰情形差異不大,因此可利用純溫度負載之試驗進行壽命預估。此外,在實驗過程中,我們發現烤箱的加熱形式會嚴重地影響發光二極體的接面溫度,故未來進行發光二極體加速老化實驗時,須將實驗用之烤箱的影響列為考慮因素之一。
In recent years, Light emitting diodes (LEDs) has become more and more popular because of their low power consumption, low-pollution and long-life. Currently, the common lumen maintenance test of LED follows IES LM80-08 standard, which costs at least 6000 hours for measurement and prolongs the time-to-market schedule.
There are some stress will influence the lifetime of LEDs, such as temperature stress, current stress and humidity stress. In our previous researches, a modified accelerated aging test algorithm using different high temperature stress without input current was successfully proposed. In this research, we will process an accelerated aging test with current stress and temperature stress. The purpose of this research are (i) observing the lumen degradation in current and temperature loading aging test, (ii) investigating the current stress and temperature stress accelerated factor in the test, (iii) finding the appropriate life prediction model to predict the accurate lifetime and (iv) proposing an available method to shorten the reliability test standards, promoted the light-emitting diode industry.
First of all, we use a validated finite element thermal analysis model and thermal resistance of LED to predict the junction temperature and find out the ambient temperature of experimental conditions. Then use the forward voltage method to measure the junction temperature and validate the prediction result. Finally, we set up the accelerated aging test experimental conditions. In our experiment result, the same junction temperature with different current stress will cause the lumen maintenance decay similarly. So that in this experimental conditions that could use Arrhenius model which only consider high temperature stress without input current to prediction the lifetime of LED. Moreover, during the experiment we found out the heating type of oven will influence junction temperature of LED seriously. In the future, when we do the aging test of LED should consider about the oven to make sure whether the measurement result is correct.
摘要 I
Abstract IV
目錄 VI
圖目錄 IX
表目錄 XII
第一章 緒論 1
1.1 研究動機 2
1.2 文獻回顧 4
1.3 研究目標 11
第二章 基礎理論 14
2.1 發光二極體發光原理 14
2.2 光學特性基礎理論 23
2.2.1 光通量 23
2.2.2 色溫 25
2.2.3 演色性 26
2.3 二極體電壓電流與溫度關係特性 26
2.4 發光二極體環境與接面間熱阻 29
2.5 熱傳遞分析 30
2.5.1 熱傳遞行為 30
2.5.2 發光二極體封裝結構之熱傳遞分析 33
2.5.3 有限單元法理論 34
2.5.4 穩態熱傳導有限單元法理論 35
2.6 加速老化試驗 38
2.6.1 阿瑞尼士模型 38
2.6.2 艾林模型 39
2.7 統計方法 40
2.7.1 韋伯分布 41
第三章 高功率發光二極體封裝結構之光學與熱分析 43
3.1 高功率發光二極體光電轉換效率量測試驗 44
3.2 高功率發光二極體晶片接面溫度量測試驗 46
3.2.1 順向偏壓量測方法 47
3.2.2 高功率發光二極體溫度敏感參數實驗結果 49
3.2.3 高功率發光二極體晶片接面溫度量測結果 52
3.3 高功率發光二極體之熱阻計算分析 53
3.4 高功率發光二極體之有限單元熱分析 54
3.4.1 高功率發光二極體封裝結構分析 55
3.4.2 有限單元熱分析模型建立 56
3.4.3 有限單元熱分析邊界條件與負載設定 58
3.4.4 有限單元熱分析模擬結果 60
3.5 熱阻值計算結果和熱分析模擬結果與實驗之驗證 64
3.6 加速老化實驗使用烤箱之考量 66
第四章 高功率發光二極體加速老化因子分析 68
4.1 流明維持率量測規範 68
4.2 溫度與電流應力之加速老化試驗設計 71
4.2.1 試驗條件之預估與驗證 73
4.3 溫度電流負載加速老化實驗結果與討論 75
4.3.1 高功率發光二極體加速老化試驗之光衰情形 75
4.3.2 高功率發光二極體之壽命預估與壽命模型 79
4.3.3 加速老化試驗之電流與溫度效應分析 86
第五章 結論與未來展望 88
參考文獻 91
[1] E. M. Sa, F. L. M. Antunes, and A. J. Perin, “Junction Temperature Estimation for High Power Light-Emitting Diodes,”International Symposium on Industrial Electronics, Vigo, Spain, 4-7 June, 2007.
[2] S. Min, J. Li, J.-a. Duan, and G. Deng, “Bump Thermal Management Analysis of LED with Flipchip Package,”International Conference on Electronic Packaging Technology, Shanghai, China, 26-29 August, 2006.
[3] IES (Illuminating Engineering Society) LM-79-08, “Approved Method : Electrical and Photometric Measurement of Solid-State Lighting,” 2008.
[4] IES (Illuminating Engineering Society) LM-80-08, “Approved Method : Measuring Lumen Maintenance of LED Light Sources ”, 2008.
[5] IES (Illuminating Engineering Society)TM-21-11, “Projecting Long Term Lumen Maintenance of LED Light Sources,” 2011.
[6] C. Bohler, “LEDs for illumination: past, present and future,”International Semiconductor Device Research Symposium, Washington, USA, 10-12 Dec., 2003.
[7] E. F. Schubert, Light-Emitting Diode, Cambridge University Press, New York, 2003.
[8] S. Buso, G. Spiazzi, M. Meneghini, and G. Meneghesso, “Performance Degradation of High-Brightness Light Emitting Diodes Under DC and Pulsed Bias,” IEEE Transactions on Device and Materials Reliability, Vol. 8, pp. 312-322, 2008.
[9] H. J. Round, A Note on Carborundum, pp. 309, Electrical world, February, 1907.
[10] N. Holonyak, John Bardeen and the Point- Contact Transistor, pp. 36-43, Physics Today, April, 1992.
[11] I.Akasaki and H.Amano, “Crystal growth and properties of column III nitrides for short wavelength light emitters,” Device Research Conference, Boulder, Colorado, USA, 20-22 June, 1994.
[12] S. Nakamura, T. Mukai and M. Senoh, “High-Power GaN P-N Junction Blue-Light-Emitting Diodes,” Japanese Journal of ApplyPhysics, Vol. 30, No. 12A, pp. 1998-2001, December, 1991.
[13] S. Nakamura and T. Mukai, “High-Quality InGaN Films Grown on GaN Films,” Japanese Journal of Apply Physics,Vol. 31, No.10B, pp. 1457-1459, October, 1992.
[14] S. Nakamura, M. Senoh and T. Mukai, “P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes,” Japanese Journal of Apply Physics, Vol. 32, No. 1A/B, pp.8-11, January, 1993.
[15] S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama, “High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structure,” Japanese Journal of Apply Physics, Vol. 34, No. 7A, pp.797-799, July, 1995.
[16] S. Nakamura, and G. Fasol, The Blue Laser Diode: GaN based Light Emitters and Lasers Berlin, Springer, 1997.
[17] R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III-Nitrides,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 8, pp. 339-345, 2002.
[18] M. Meneghini, L. Trevisanello, C. Sanna, G. Mura, M. Vanzi, G. Meneghesso, and E. Zanoni, “High temperature electro-optical degradation of InGaN/GaN HBLEDs,” Microelectronics Reliability, Vol. 47, pp. 1625-1629, 2007.
[19] L. Trevisanello, M. Meneghini, G. Mura, M. Vanzi, M. Pavesi, G. Meneghesso, and E. Zanoni, “Accelerated Life Test of High Brightness Light Emitting Diodes,” IEEE Transactions on Device and Materials Reliability, Vol. 8, pp. 304-311,June, 2008.
[20] B. Fan, W. Hao, Z. Yu, Y. Xian, and G. Wang, “Study of Phosphor Thermal-Isolated Packaging Technologies for High-Power White Light-Emitting Diodes,” IEEE Photonics Technology Letters, Vol. 19, pp. 1121-1123, 2007.
[21] Y. C. Hsu, Y. K. Lin, C. C. Tsai, J. H. Kuang, S. B. Huang, H. L. Hu, Y. I. Su, and W. H. Cheng, “Failure Mechanisms Associated with Lens Shape of High-Power LED Modules in Aging Test,”The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 21-25 Oct, 2007.
[22] C. C. Tsai, J. Wang, Y. C. Hsu, Y.J. Lin, M. H. Chen, C. W. Lee, S. B. Huang, H. L. Hu and W. H. Cheng, “Investigation of Ce:YAG Doping Effect on Thermal Aging for High-Power Phosphor-Converted White-Light-Emitting Diodes,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 9, No. 3, pp. 367-371, September, 2009.
[23] M. Meneghini, A. Tazzoli, G. Mura, G. Meneghesso, and E. Zanoni, “A Review on the Physical Mechanisms That Limit the Reliability of GaN-Based LEDs,” IEEE Transactions on Electron Devices, Vol. 57, pp. 108-118, 2010.
[24] M. Meneghini, M. Dal Lago, N. Trivellin, G. Meneghesso, and E. Zanoni, “Degradation Mechanisms of High-Power LEDs for Lighting Applications: An Overview,” IEEE Transactions on Industry Applications, Vol. 50, pp. 78-85, 2014.
[25] N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu, and L. Deng, “Solid-state lighting: failure analysis of white LEDs,” Journal of Crystal Growth, Vol. 268, pp. 449-456, 2004.
[26] J. C. Lin, and K. N. Chiang, “Thermal/mechanical analysis of novel C-TSOP using nonlinear FEM method,” Journal of the Chinese Institute of Engineers, Vol. 24, pp. 453-462, 2001.
[27] K. M. Chen, K. H. Houng, and K. N. Chiang, “Thermal resistance analysis and validation of flip chip PBGA packages,” Microelectronics Reliability, Vol. 46, pp. 440-448, 2006.
[28] W. H. Chi, T. L. Chou, C. N. Han, S. Y. Yang, and K. N. Chiang, “Analysis of Thermal and Luminous Performance of MR-16 LED Lighting Module,” IEEE Transactions on Components and Packaging Technologies,, Vol. 33, pp. 713-721, 2010.
[29] Y. F. Su, S. Y. Yang, T. Y. Hung, C. C. Lee, and K. N. Chiang, “Light degradation test and design of thermal performance for high-power light-emitting diodes,” Microelectronics Reliability, Vol. 52, pp. 794-803, 2012.
[30] Y. H. Yang, Y. F. Su, and K. N. Chiang, “Acceleration factor analysis of aging test on gallium nitride (GaN)-based high power light-emitting diode (LED),” IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Orlando, USA, 27-30 May 2014.
[31] F. M. Hsu, (2015). Study on Temperature and Current Stress Aging Effect for High Power Light Emitting Diodes, Unpublished master’s dissertation, National Tsing Hua University, Taiwan.
[32] S. Murata, and H. Nakada, “Adding a heat bypass improves the thermal characteristics of a beam laser diode array,” Journal of Applied Physics, Vol. 72, pp. 2514-2516, 1992.
[33] E. Hong, and N. Narendran, “A method for projecting useful life of LED lighting systems,”3rd International Conference on Solid State Lighting, San Diego, California, USA, 5-7 Aug, 2003.
[34] Y. Xi, and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Applied Physics Letters, Vol. 85, pp. 2163-2165, 2004.
[35] JEDEC Standard EIA/JESD51-1, “Integrated Circuits Thermal Measurement Method-Electrical Test Method (Single Semiconductor Device),” 1995.
[36] B. Siegal, “Practical Considerations in High Power LED Junction Temperature Measurements,”31st International Conference on Electronics Manufacturing and Technology, Petaling Jaya, Malaysia, 8-10 Nov. 2006.
[37] N. Narendran, J. D. Bullough, N. Maliyagoda, and A. Bierman, “What is Useful Life for White Light LEDs?,” Journal of the Illuminating Engineering Society, Vol. 30, pp. 57-67, 2001.
[38] N. Narendran, and Y. Gu, “Life of LED-based white light sources,” Journal of Display Technology, Vol. 1, pp. 167-171, 2005.
[39] S. Ishizaki, H. Kimura, and M. Sugimoto, “Lifetime Estimation of High Power White LEDs,” Journal of Light & Visual Environment, Vol. 114, pp. 11, 2007.
[40] J. Huang, S. Koh, X. Li, and G. Zhang, “Investigation of lumen degradation mechanisms of mid-power LED by HAST,”15th International Conference on Electronic Packaging Technology, Chengdu, China, 12-15 Aug, 2014.
[41] J. Wang, and X. Ma, “Study on LED devices step-stress accelerated degradation test,”14th International Conference on Electronic Packaging Technology, Dalian, China, 11-14 Aug, 2013.
[42] 史光國, 半導體發光二極體及固態照明, 全華圖書, 2005.
[43] S. M. Sze, and K. K. Ng, Physics of Semiconductor Devices 3rd edition, Wiley-Interscience, 2006.
[44] E. F. Schubert, Light-Emitting Diode 2nd edition, New York, Cambridge University Press, 2006.
[45] M. Plank, The Theory of Heat Radiation, New York, Dover Publication, 1959.
[46] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 8, pp. 310-320, 2002.
[47] L. S. Bobrow, Fundamentals of Electrical Engineering 2nd, New York USA, New York: Oxford UP, 1996.
[48] W. F. Tang, S. P. Ying, P. C. Chang, , “Reliability Analysis of the thermal resistance measurement,” Nanotechnology Materials and Devices Conference, Tainan, Taiwan, 7-9 Oct, 2013.
[49] J. P. Holman, Heat Transfer 9th, McGraw-Hill, 2002.
[50] F. P. Incropera, and D. P. DeWitt, Fundamentals of Heat and Mass Transfer 5th Edition, Wiley, 2002.
[51] W. H. McAdams, Heat Transmission 3rd edition, McGraw-Hill, 1954.
[52] R. D. Cool, D. S. Malkus, M. E. Plesha and R. J. Witttt, Concepts And Applications of Finite Element Analysis 4th Edition, John Wiley & Sons. Inc., 2001.
[53] K. Sau, D. Willem Van, and G. Q. Zhang, “Degradation of light emitting diodes: a proposed methodology,” Journal of Semiconductors, Vol. 32, pp. 41-44, 2011.
[54] W. Weibull, A Statistical Theory of the Strength of Materials, Generalstabens litografiska anstalts, 1939.
[55] S. Liu and X. B. Luo, LED Packaging for Lighting Applications, Wiley, 2011.
[56] G. Elger, R. Lauterbach, K. Dankwart and C. Zilkens, “Inline Thermal Transient Testing of High Power LED Modules for Solder Joint Quality Control,” 2011 IEEE 61st Electronic Components and Technology Conference (ECTC),Lake Buena Vista, Florida, USA, May 31-June 3, 2011.
[57] ENERGY STAR, “Program Requirements for Solid State Lighting Luminaires,” 2008.
[58] S. C. Yang, P. Lin, C. P. Wang, S. B. Huang, C. L. Chen, P. F. Chiang, A. T. Lee, M. T. Chu“Failure and degradation mechanisms of high-power white light emitting diodes” Microelectronics Reliability, pp. 959-964, 2010
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *