帳號:guest(3.137.181.230)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林恭正
作者(外文):Lin, Kung Cheng
論文名稱(中文):應用改良式積分光彈法決定軸對稱殘餘應力
論文名稱(外文):DETERMINATION OF AXISYMMETRIC RESIDUAL STRESS BY USING THE IMPROVED INTEGRATED PHOTOELASTICITY
指導教授(中文):王偉中
指導教授(外文):Wang, Wei Chung
口試委員(中文):陳元方
蔣長榮
口試委員(外文):Chen, Yuan Fang
Chiang, Chun Ron
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:103033549
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:109
中文關鍵詞:改良式線性近似積分光彈法改良式非線性演算之積分光彈法軸對稱殘餘應力
外文關鍵詞:Improved linear approximation integrated photoelasticityImproved nonlinear algorithm integrated photoelasticityAxisymmetric residual stress
相關次數:
  • 推薦推薦:0
  • 點閱點閱:277
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
鏡片加工過程中所產生之殘餘應力可能使鏡片表面形貌發生變化,因此有必要於鏡片製作過程中,進行鏡片殘餘應力之量測。故本研究嘗試開發鏡片軸對稱殘餘應力量測之方法,以做為預先消除殘餘應力並再加工之依據。
積分光彈法(Integrated Photoelasticity)可應用於量測僅存在熱殘餘應力的軸對稱試片之應力分布,然而,中、大型玻璃鏡片均採用傳統加工方式進行鏡片製作,其殘餘應力狀態複雜,無法使用已知之積分光彈法進行量測。因此,本研究運用力平衡之概念開發改良式線性近似積分光彈法(Improved Linear Approximation Integrated Photoelasticity, ILAIP)以及改良式非線性演算之積分光彈法(Improved Nonlinear Algorithm Integrated Photoelasticity, INAIP)計算軸對稱物件之殘餘應力,以適用於殘餘應力狀態複雜之傳統加工鏡片。
本研究初步使用模擬方法探討ILAIP於應力計算上產生之誤差,並進而驗證理論之正確性。本研究進一步使用INAIP進行應力計算以降低ILAIP所產生之誤差,進而提升應力計算上之精度。
The residual stress generated from fabrication processing may cause the lens surface profile deform. Thus, measuring the residual stress of the lens during fabrication processing is needed. In this thesis, a method for measuring axisymmetric residual stress of the lens was proposed so that it is possible to optimize the fabrication parameters to reduce the residual stress of the lens in advance.
Integrated photoelasticity can be used to measure the axisymmetric thermal residual stress in an axisymmetric specimen. However, the axisymmetric residual stress distribution produced by the traditional fabrication methods for the large mirrors is complicated so that the existing integrated photoelastic methods cannot be used. In this thesis, by using the stress equilibrium, improved linear approximation integrated photoelasticity (ILAIP) and improved nonlinear algorithm integrated photoelasticity (INAIP) were presented to calculate the axisymmetric residual stress in general cases.
In this thesis, the calculation error of implementing ILAIP was first investigated by simulation and the applicability of ILAIP was then verified. Furthermore, the calculation error by using the ILAIP can be effectively reduced by using the INAIP.
一、 緒論 1
1.1 研究動機 1
1.2 文獻回顧 4
二、 原理 8
2.1 光彈法 8
2.1.1 應力光學定律[30] 8
2.1.2 瓊斯微積分[32] 9
2.1.3 延遲量與等傾角之計算 11
2.2 積分光彈法 13
2.2.1 線性近似積分光彈法 13
2.2.2 廣義洋蔥剝皮法 16
2.2.3 改良式線性近似積分光彈法 20
2.2.4 改良式非線性演算之積分光彈法 22
三、 模擬流程與規劃 26
3.1 試片之建立與規劃 26
3.2 模擬光彈效應與驗證 32
四、 結果與討論 34
4.1 驗證改良式積分光彈法理論 34
4.1.1 試片1至試片9之模擬結果 34
4.1.2 試片10之模擬結果 35
4.2 ILAIP與INAIP之比較 36
4.2.1 試片10之模擬結果 37
4.2.2 試片11之模擬結果 38
4.2.3 試片12之模擬結果 39
4.3 模擬結果再探討 39
4.4 應力凍結法試片之實驗驗證 41
五、 結論與未來展望 45
5.1 結論 45
5.2 未來展望 46
六、 參考文獻 47
[1] W. C. Lin, S. T. Chang, C. K. Chung, Y. C. Lin, S. F. Tseng and C. K. Sung, “Performance of Opto-mechanical Assembly for Reflective Mirror Subsystem of Lithographic Projection Lens,” The 6th International Conference of Asian Society for Precision Engineering and Nanotechnology, Harbin, China, pp. 15-20, 2015.
[2] W. C. Lin, S. T. Chang, C. F. Ho, C. H. Kuo, C. K. Chung, W. Y. Hsu, S. F. Tseng and C. K. Sung, “A Novel Absolute Measurement for the Low-frequency Figure Correction of Aspheric Surfaces,” Proceedings of SPIE, vol. 9524, no. 1, pp. 952417_1-952417_7, 2015.
[3] Website :
https://directory.eoportal.org/web/eoportal/satellite-missions/f/formosat-5/, 2016.
[4] C. H. Kuo, Z. R. Yu, C. F. Ho, W. Y. Hsu and F. Z. Chen, “Freeform Mirror Polishing for Compensation on Non-symmetry System Aberrations of Remote Sensing Instrument,” Proceedings of SPIE, vol. 8841, no. 1, pp. 88410Z_1-88410Z_6, 2013.
[5] B. Braunecker, R. Hentschel and H. J. Tiziani, “Advanced Optics Using Aspherical Elements,” SPIE Publications, Bellingham, U. S. A., 2008.
[6] Website: http://www.schott.com/advanced_optics/english/download/schott_tie-38_zerodur_lightweighting_v3_march_2008_en.pdf?highlighted_text=subsurfacedamage/, 2016.
[7] Website: http://esdimetrology.com/, 2016.
[8] 由國家實驗研究院儀器科技研究中心林煒晟研究員提供。
[9] A. Y. Yi, B. Tao, F. Klocke, O. Dambon and F. Wang, “Residual Stresses in Glass after Molding and its Influence on Optical Properties,” Procedia Engineering, vol. 19, no. 1, pp. 402-406, 2011.
[10] B. Tao, P. He, L. Shen and A. Yi, “Annealing of Compression Molded Aspherical Glass Lenses,” Journal of Manufacturing Science and Engineering, vol. 136, no. 1, pp. 011008_1-011008_8, 2013.
[11] B. Tao, P. He, L. Shen and A. Yi, “Quantitatively Measurement and Analysis of Residual Stresses in Molded Aspherical Glass Lenses,” The International Journal of Advanced Manufacturing Technology, vol. 74, no. 9, pp. 1167-1174, 2014.
[12] P. B. Godbole, U. M. Chaudhari and S. K. Bhave, “A New Integrated Photoelasticity Method for Axisymmetric Stress Distribution,” Experimental Mechanics, vol. 27, no. 1, pp. 31-36, 1987.
[13] H. K. Aben and J. Josepson, “On the Precision of Integrated Photoelasticity for Hollow Glassware,” Optics and Lasers in Engineering, vol. 22, no. 2, pp. 121-135, 1995.
[14] H. K. Aben, L. Ainola and J. Anton, “Sum Rules for Photoelastic Residual Stress Measurement in Axisymmetric Glass Articles,” Proceedings of the International Conference on Advanced Technology in Experimental Mechanics '99, Ube, Japan, pp. 629-634, 1999.
[15] J. Anton, A. Errapart, H. K. Aben and L. Ainola, “A Discrete Algorithm of Integrated Photoelasticity for Axisymmetric Problems,” Experimental Mechanics, vol. 48, no. 5, pp. 613-620, 2008.
[16] A. Errapart, H. K. Aben, L. Ainola and J. Anton, “Photoelastic Tomography for the Measurement of Thermal and Residual Stresses in Glass,” 9th International Congress on Thermal Stresses, Budapest, Hungary, pp. 1-4, 2011.
[17] M. G. Wertheim, “Mémoire sur la double refraction temporairement produite dans les corps isotropes, et sur la relation entre l’élasticité mécanique et entre l’élasticité optique,” Annales de chimie et de physique, vol. 40, no. 1, pp. 156-221, 1854.
[18] H. K. Aben, “Optical Phenomena in Photoelastic Models by the Rotation of Principal Axes,” Experimental Mechanics, vol. 6, no. 1, pp. 13-22, 1966.
[19] J. F. Doyle and H. T. Danyluk, “Integrated Photoelasticity for Axisymmetric Problems,” Experimental Mechanics, vol. 18, no. 6, pp. 215-220, 1978.
[20] S. Timoshenko and J. N. Goodier, “Theory of Elasticity,” McGraw-Hill, New York, U. S. A., 1951.
[21] M. M. Frocht and R. Guernsey, “A Special Investigation to Develop a General Method for Three-dimensional Photoelastic Stress Analysis,” National Advisory Committee for Aeronautics, report 1148, pp. 1-17, 1953.
[22] V. M. Alexandrov and D. A. Pozharskii, “Three-dimensional Contact Problems,” Springer Science & Business Media, Heidelberg, Germany, 2012.
[23] H. K. Aben, J. I. Josepson and K. J. E. Kell, “The Case of Weak Birefringence in Integrated Photoelasticity,” Optics and Lasers in Engineering, vol. 11, no. 3, pp. 145-157, 1989.
[24] R. C. O’Rourke, “Three-dimensional Photoelasticity,” Journal of Applied Physics, vol. 22, no. 7, pp. 872-878, 1951.
[25] H. K. Aben, L. Ainola and J. Anton, “Half-fringe Phase-stepping with Separation of the Principal Stress Directions,” Proceedings of the Estonian Academy of Sciences, Engineering, vol. 5, no. 3, pp. 195-211, 1999.
[26] E. A. Patternson and Z. F. Wang, “Towards Full Field Automated Photoelastic Analysis of Complex Components,” Strain, vol. 27, no. 2, pp. 49-53, 1991.
[27] T. Kihara, “Automatic Whole-field Measurement of Photoelasticity Using Linear Polarized Incident Light,” Proceedings of the 9th International Conference on Experimental Mechanics, Copenhagen, Denmark, pp. 821-827, 1990.
[28] H. K. Aben and A. Errapart, “A Non-linear Algorithm of Photoelastic Tomography for the Axisymmetric Problem,” Experimental Mechanics, vol. 47, no. 6, pp. 821-830, 2007.
[29] P. M. Sutton, “Stress Measurement in Circular Cylinders,” Journal of the American Ceramic Society, vol. 41, no. 3, pp. 103-109, 1958.
[30] J. W. Dally and W. F. Riley, “Experimental Stress Analysis,” 3rd ed., McGraw-Hill, New York, U. S. A., 1991.
[31] J. C. Maxwell, “On the Equilibrium of Elastic Solids,” Transactions of the Royal Society of Edinburgh, vol. 20, no. 1, pp. 87-120, 1853.
[32] K. Ramesh, “Digital Photoelasticity: Advanced Techniques and Applications,” 1st ed., Springer, Berlin, Germany, 2000.
[33] H. K. Aben, “Integrated Photoelasticity,” McGraw-Hill, New York, U. S. A., 1979.
[34] A. V. S. S. S. R. Sarma, S. A. Pillai, G. Subramanian and T. K. Varadan, “Computerized Image Processing for Whole-field Determination of Isoclinics and Isochromatics,” Experimental Mechanics, vol. 32, no. 1, pp. 24-29, 1992.
[35] A. C. Ugural and S. K. Fenster, “Advanced Strength and Applied Elasticity,” 5th ed., Prentice Hall, Upper Saddle River, U. S. A., 2011.
[36] L. Ainola and H. K. Aben, “A New Relationship for the Experimental-analytical Solution of the Axisymmetric Thermoelasticity Problem,” Journal of Applied Mathematics and Mechanics, vol. 84, no. 3, pp. 211-215, 2004.
[37] Website: https://zh.wikipedia.org/wiki/%E6%9C%80%E4%BC%98%E5%8C%96, 2016.
[38] Website: http://www.mathworks.com/products/matlab, 2016.
[39] Website: https://www.microsoft.com/zh-tw/, 2016.
[40] J. Cernosek, “Three-dimensional Photoelasticity by Stress Freezing,” Experimental Mechanics, vol. 20, no. 12, pp.417-426, 1980.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *