帳號:guest(13.58.133.50)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李屹
作者(外文):Li, Yi
論文名稱(中文):利用整合式麥克風陣列與喇叭陣列系統分析房間響應與合成空間聲場
論文名稱(外文):Time-Space Analysis, Synthesis, and Room Response Modeling of Virtual-Reality Sound Fields Using Microphone and Loudspeaker Arrays
指導教授(中文):白明憲
指導教授(外文):Bai, Ming Sian
口試委員(中文):陳榮順
劉奕汶
口試委員(外文):Chen, Rong Shun
Liu, Yi Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:103033541
出版年(民國):105
畢業學年度:105
語文別:中文英文
論文頁數:52
中文關鍵詞:空間音訊反射麥克風陣列喇叭陣列
外文關鍵詞:spatial audioreverberationmicrophone arrayloudspeaker array
相關次數:
  • 推薦推薦:0
  • 點閱點閱:417
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究介紹整合式麥克風陣列及喇叭陣列應用於分析房間響應和合成空間聲場。此陣列系統的運作包含兩個階段:在第一個階段,利用麥克風陣列分析以及將迴響聲場「編碼」,將聲場簡化為僅由聲源方向以及訊號兩個物理量來表示,此麥克風陣列是利用MPDR和CS兩種波束成型的方法來測定平面波的方向。對於聲源的分離使用TIKR,可以在聲源數量符合稀少性的情況將聲源編碼。另一方面,對於一個真實房間、聲源數量不符合稀少性的情況時,我們能用麥克風陣列在房間中收到的聲場,編碼成許多等間距角度的訊號。也是本研究的重點。
在第二個階段,利用喇叭陣列可以在第一階段中所獲得的聲場資訊「解碼」以及重現,其中包含聲源方位、訊號。在這個階段我們透過在重建範圍內設置大量的假想控制點,來對欲重建的聲場做取樣,進而由這些控制點來反推喇叭訊號。而實際在一個真實房間中重現聲場的時候,會使用兩個方法做比較,一個方法是使用自由空間聲場反算,另一個方法則是使用房間環境反算。
實驗結果顯示,在真實房間中,使用房間環境反算的訊號在喇叭範圍內中可以重現目標聲波且誤差較小,在定位及消除迴響的效果上有明顯地提升,相對地在音質上會有所損失。而使用自由空間聲場反算的訊號因受到房間的反射,在定位及消除迴響的效果上較差。
A unified framework is proposed for analysis and synthesis of spatial reverberant sound fields. In sound field analysis (SFA), a 24-element circular microphone array (CMA) is utilized to encode the sound field based on plane-wave decomposition, whereas in sound field synthesis (SFS) a 32-element rectangular loudspeaker array is employed to decode the encoded sound field using pressure matching technique. Depending on the sparsity of the sound sources, the SFA stage can be implemented in two ways. For the sparse-source scenario, a two-stage algorithm is utilized to estimate the source bearings using the minimum power distortionless response (MPDR) and the associated amplitudes of plane waves using the Tikhonov regularization (TIKR) algorithm. Alternatively, a one-stage algorithm based on compressive sensing (CS) algorithm can be used. For the nonsparse-source scenario, a one-stage TIKR algorithm is utilized to solve for the amplitudes for plane-wave components uniformly distributed in the angular domain. The SFA technique for the nonsparse source scenario is also useful in establishing the room response model, as required in the pressure matching step of the SFS phase. The integrated acoustic array system is validated with localization and listening tests.
摘要 i
ABSTRACT ii
誌謝 iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES x
Chapter 1 INTRODUCTION 1
Chapter 2 SOUND FIELD ANALYSIS (SFA) 5
2.1 Sparse Source Scenario 5
2.1.1 One-Stage CS Algorithm 6
2.1.2 Two-Stage MPDR and TIKR Algorithm 7
2.2 Nonsparse Source Scenario 9
2.2.1 One-Stage TIKR Algorithm 9
Chapter 3 SOUND FIELD SYNTHESIS (SFS) 10
Chapter 4 ROOM RESPONSE MEASUREMENT AND INTERPOLATION 12
4.1 Nonsparse Source Scenario 12
Chapter 5 SIMULATIONS AND EXPERIMENTS 15
5.1 Numerical Simulations 15
5.1.1 SFA Simulations 15
5.1.2 SFS Simulations 15
5.2 Experimental Investigations 17
5.2.1 One-Source Scenario 18
5.2.2 Four-Sources Scenario 21
Chapter 6 CONCLUSIONS 48
REFERENCE 49
1. H. A. M. Clark, G. F. Dutton and P. B. Vanderlyn, “The ‘Stereosonic’ Recording and Reproduction System: A Two-Channel Systems for Domestic Tape Records,” J. Audio Eng. Soc., vol.6, no. 2, pp. 102-117, Apr. 1958.
2. H. Fletcher, “Auditory Perspective – Basic Requirements,” Electrical Engineering, vol.53, no. 3, pp. 9-11, Jan. 1934.
3. J. C. Steinberg and W. B. Snow, “Auditory Perspective – Physical Factors,” Electrical Engineering, vol.53, no. 1, pp. 12-17, Jan. 1934.
4. M. A. Gerzon, “Ambisonics in Multichannel Broadcasting and Video,” J. Audio Eng. Soc., vol.33, no. 11, pp. 859-871, Nov. 1985.
5. T. Sporer, “Wave Field Synthesis – Generation and Reproduction of Natural Sound Environments,” in Proc. of the 7th Int. Conf. on Digital Audio Effects, 2004, pp. 133-138.
6. S. Spors, R. Rabenstein and J. Ahrens, “The Theory of Wave Field Synthesis Revisited,” in Proc. Audio Eng. Soc., Conv. 124, 2008.
7. D. de Vries, “AES Monograph: Wave Field Synthesis,” Audio Eng. Soc., New York, NY, USA: Springer, 2009, pp. 1-95.
8. F. M. Fazi, “Sound Field Reproduction,” Ph.D. thesis, Faculty of Eng., Science and Mathematics, University of Southampton, 2010.
9. L. Romoli, P. Peretti, S.Cecchi, L. Palestini and F. Piazza, “Real-Time Implementation of Wave Field Synthesis for Sound Reproduction Systems,” IEEE Asia Pacific Conf., 2008, pp.430-433.
10. M. R. Bai and C. H. Kuo, “Acoustic Source Localization and Deconvolution-Based Separation,” J. Acoust. Soc. Am., vol. 135, no. 4, pp. 2358, Apr. 2014.
11. M. R. Bai, Y. H. Hua, C. H. Kuo and Y. H. Hsieh, “An Integrated Analysis- Synthesis Array System for Spatial Sound Fields,” J. Acoust. Soc. Am., vol. 137, no. 3, pp. 1366-1376, Mar. 2015.
12. M. R. Bai, J.-G. Ih, J. Benesty, Acoustic Array Systems: Theory, Implementation, and Application, Wiley-IEEE Press, 2013, 1st edition, Singapore, Chaps. 3-4, 2013.
13. J. Capon, “High-Resolution Frequency-Wavenumber Spectrum Analysis,” in Proc. IEEE, vol. 57, no. 8, pp.1408-1418, Aug. 1969.
14. J. Gomes, J. Hald, P. Juhl and F. Jacobsen, “On the Applicability of the Spherical Wave Expansion with a Single Origin for Near-Field Acoustical Holography,” J. Acoust. Soc. Am., vol. 125, no. 3, pp. 1529-1537, Jan. 2009.
15. E. J. Candes and M. B. Wakin, “An Introduction to Compressive Sampling,” IEEE SP Mag., vol. 25, no. 2, pp. 21-30, Mar. 2008.
16. E. J. Candes, J. Romberg and T. Tao, “Stable Signal Recovery from Incomplete and Inaccurate Measurements,” Communications on Pure and Applied Mathematics, vol. 59, no. 8, pp. 1207-1223, Mar. 2006.
17. E. J. Candes, J. Romberg and T. Tao, “Robust Uncertainty Principles: Exact Signal Reconstruction Form Highly Incomplete Frequency Information,” IEEE Trans. on Info. Theory, vol. 52, no. 2, pp. 489-509, Feb. 2006.
18. G. F. Edelmann and C. F. Gaumond, “Beamforming Using Compressive Sensing,” J. Acoust. Soc. Am., vol. 130, no. 4, pp. EL232-237, Oct. 2011.
19. M. R. Bai and C. C. Chen, “Application of Convex Optimization to Acoustical Array Signal Processing,” J. Sound Vib., vol. 332, no. 25, pp. 6596-6616, Dec. 2013.
20. J. Martinez, G. Leus and W. B. Kleijn, “Fast Sound Field Reproduction in Box-Shaped Rooms: Rigid Wall Case,” in 23rd Eur. Signal Processing Conf., 2015, pp. 2471-2475.
21. J. B. Allen and D. A. Berkley, “Image Method for Efficiently Simulating Small-Room Acoustics,” J. Acoust. Soc. Am., vol. 65, no. 4, pp. 943-950, Apr. 1979.
22. T. I. Laakso, V. Valimaki, M. Karjalainen and U. K. Laine “Tools for Fractional Delay Filter Design,” IEEE SP Mag., pp. 41-45, Jan. 1996.
23. N. Huleihel and B. Rafaely, “Spherical Array Processing for Acoustic Analysis Using Room Impulse Responses and Time-Domain Smoothing,” J. Acoust. Soc. Am., vol. 133, no. 6, pp. 3995-4007, Jun. 2013.
24. R. P. Brent, “Algorithms for Minimization without Derivatives,” Prentice-Hall, Inc., Englewood Cliffs, New Jersey, pp. 48-75, 1973.
25. ITU-T Recommendation, “Perceptual evaluation of speech quality (PESQ), An Objective Method for End-to-End Speech Quality Assessment of Narrow-Band Telephone Networks and Speech Codecs,” ITU-T Recommendation P.862, Feb. 2001.
26. ITU-R Recommendation, “Subjective Assessment of Sound Quality,” ITU-R BS.562-3. pp. 1-8. Dec. 2003.
27. Y. H. Kim and J. W. Choi, “Sound Visualization and Manipulation,” Wiley, Singapore, 2013.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *