帳號:guest(3.147.63.2)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱宜諒
作者(外文):Chiu Yi Liang
論文名稱(中文):微流體晶片用於血管新生觀測與癌症藥物開發檢測之研究
論文名稱(外文):A Microfluidic Device for Angiogenesis Observation and Anti-Cancer Drug Studies
指導教授(中文):劉承賢
指導教授(外文):Liu, Cheng Hsien
口試委員(中文):張晃猷
邱一
口試委員(外文):Chang, Hwan You
Chiu, Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:103033540
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:56
中文關鍵詞:血管新生濃度梯度體外模型細胞外基質
外文關鍵詞:angiogenesisconcentration gradientin vitro modelextracellular matrix
相關次數:
  • 推薦推薦:0
  • 點閱點閱:281
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
血管新生在癌症的研究中,一直是一個很重大的議題。在癌症的病史過程中,最讓人感到害怕的便是癌症轉移。而血管新生做為癌症轉移的必經過程,在癌症治療中被視為是非常重要的目標。
然而,在人體所構成的複雜環境內,不同種類的細胞所分泌的生長物質不斷的影響著彼此,使得血管新生仍是一個布滿許多神秘面紗的機制。而在我們的研究中,我們展示一個為觀察多細胞相互作用所設計的微流體晶片。在大多數血管新生的研究中,都只單純使用單一生長物質作為建構體外模型的重點,但這樣的狀況離人體內的環境仍相去甚遠。而我們的設計可用於多細胞的觀察。透過流阻與濃度梯度的分析,我們的晶片可以分別將不同的細胞定位在三個不同的培養區中,並從設計的觀測區中觀測細胞相互作用的結果。在我們的生物實驗結果中,我們可以分別培養HUVEC、3T3及A549於三個個別的培養區域中,看到有部分的HUVEC因受到刺激而有遷移的現象,並透過Image J的分析,得到HUVEC的細胞數在三天從64個培養至129個。
此晶片設計提供了一種觀測多細胞相互作用的平台,且在多細胞的環境下,能貼切的建構血管新生體外模型。期望能在血管新生與癌症研究上提供更多有利的資訊。
In cancer research, angiogenesis is always an important issue. One of the well-known cancer growing procedures is metastasis which has been known as the most horrible stage of cancer. Then angiogenesis, the necessary procedure in metastasis, has been a quite important target for cancer treatment.
The angiogenesis is still a mysterious process because of the various growth factor that affect the cancer in human body. Here we propose a microfluidic chip that is designed for multi-cell interaction observation. For angiogenesis research, most of them show using only one kind of growth factor to construct the in vitro model. Our proposed chip was used to demonstrate and observe the angiogenesis induced by multi-cell interaction. By the analysis of flow resistance and diffusion gradient, we can separately place the cell to the three different culture areas. The cell interaction could be observed in the designed observation zone. In our experimental results, we can properly culture HUVEC, 3T3 and A549 in the chip and observe the number of HUVEC cells growing from 64 to 129 in 3 days by using Image J for the characterization.
We demonstrate a unique in vitro model for multi-cell interaction. This model is expected to mimic the angiogenesis conditions in vitro. We expect this on-chip model to provide helpful information for angiogenesis and cancer study.
Abstract I
中文摘要 II
誌謝 III
目錄 IV
圖目錄 VI
1. 緒論 1
1.1 前言 1
1.1.1 微流體技術與實驗室晶片 1
1.1.2 腫瘤血管新生與癌症轉移 1
1.2 研究動機 3
1.3 文獻回顧 5
1.3.1 濃度梯度 5
1.3.2 細胞定位 8
1.3.3 微流體閥 11
1.3.4 體外模型 13
1.3.5 細胞外基質 16
2. 研究方法 18
2.1 設計原理 18
2.1.1 流阻分析 18
2.1.2 擴散理論 22
2.2 設計概念 23
2.2.1 結構設計 25
2.2.1.1 晶片操作 25
2.2.1.2 設計分析 28
2.2.2 設計模擬 31
3. 晶片製程 34
3.1 製作流程 34
3.1.1 上層結構 34
3.1.2 下層結構 37
3.1.3 晶片製作 38
3.2 製作結果 42
4. 實驗結果與討論 43
4.1 實驗架設 43
4.1.1 細胞準備 43
4.1.2 晶片準備 43
4.1.3 凝膠準備 43
4.1.4 實驗步驟 44
4.2 實驗結果 45
5. 結論 52
6. 參考文獻 53
[1] M. G. Tonnesen, X. Feng, and R. A. F. Clark, "Angiogenesis in Wound Healing," J Investig Dermatol Symp Proc, vol. 5, pp. 40-46, 2000.
[2] N. Ferrara, H. Chen, T. Davis-Smyth, H.-P. Gerber, T.-N. Nguyen, D. Peers, et al., "Vascular endothelial growth factor is essential for corpus luteum angiogenesis," Nat Med, vol. 4, pp. 336-340, 1998.
[3] J. Folkman, "Tumor angiogenesis: therapeutic implications," N Engl J Med, vol. 285, pp. 1182-6, Nov 18 1971.
[4] J. Folkman, "What Is the Evidence That Tumors Are Angiogenesis Dependent?," JNCI Journal of the National Cancer Institute, vol. 82, pp. 4-7, 1990.
[5] S. R. McDougall, A. R. Anderson, and M. A. Chaplain, "Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies," J Theor Biol, vol. 241, pp. 564-89, Aug 7 2006.
[6] D. Senger, S. Galli, A. Dvorak, C. Perruzzi, V. Harvey, and H. Dvorak, "Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid," Science, vol. 219, pp. 983-985, 1983.
[7] D. Leung, G. Cachianes, W. Kuang, D. Goeddel, and N. Ferrara, "Vascular endothelial growth factor is a secreted angiogenic mitogen," Science, vol. 246, pp. 1306-1309, 1989.
[8] M. J. Plank and B. D. Sleeman, "Tumour-Induced Angiogenesis: A Review," Journal of Theoretical Medicine, vol. 5, pp. 137-153, 2003.
[9] V. Schirrmacher, "Cancer Metastasis: Experimental Approaches, Theoretical Concepts, and Impacts for Treatment Strategies," vol. 43, pp. 1-73, 1985.
[10] K. J. Kim, B. Li, J. Winer, M. Armanini, N. Gillett, H. S. Phillips, et al., "Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo," Nature, vol. 362, pp. 841-4, Apr 29 1993.
[11] P. H. Feng, K. Y. Lee, Y. L. Chang, Y. F. Chan, L. W. Kuo, T. Y. Lin, et al., "CD14(+)S100A9(+) monocytic myeloid-derived suppressor cells and their clinical relevance in non-small cell lung cancer," Am J Respir Crit Care Med, vol. 186, pp. 1025-36, Nov 15 2012.
[12] D. R. Senger and G. E. Davis, "Angiogenesis," Cold Spring Harb Perspect Biol, vol. 3, p. a005090, Aug 2011.
[13] D. Ribatti, "The history of angiogenesis inhibitors," Leukemia, vol. 21, pp. 1606-9, Aug 2007.
[14] G. Biooncology, "Understanding Angiogenesis and VEGF," Available : http://www.biooncology.com/research-education/vegf/ligand.
[15] W. H. Organization, "The top 10 causes of death," Available : http://www.who.int/mediacentre/factsheets/fs310/en/.
[16] A. C. Society, "Non-small cell lung cancer survival rates by stage," Available : http://www.cancer.org/cancer/lungcancer-non-smallcell/detailedguide/non-small-cell-lung-cancer-survival-rates.
[17] N. L. Jeon, S. K. W. Dertinger, D. T. Chiu, I. S. Choi, A. D. Stroock, and G. M. Whitesides, "Generation of Solution and Surface Gradients Using Microfluidic Systems," Langmuir, vol. 16, pp. 8311-8316, 2000.
[18] N. Li Jeon, H. Baskaran, S. K. Dertinger, G. M. Whitesides, L. Van de Water, and M. Toner, "Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device," Nat Biotechnol, vol. 20, pp. 826-30, Aug 2002.
[19] Y. Wang, T. Mukherjee, and Q. Lin, "Systematic modeling of microfluidic concentration gradient generators," Journal of Micromechanics and Microengineering, vol. 16, pp. 2128-2137, 2006.
[20] D. Irimia, D. A. Geba, and M. Toner, "Universal microfluidic gradient generator," Anal Chem, vol. 78, pp. 3472-7, May 15 2006.
[21] V. V. Abhyankar, M. A. Lokuta, A. Huttenlocher, and D. J. Beebe, "Characterization of a membrane-based gradient generator for use in cell-signaling studies," Lab Chip, vol. 6, pp. 389-93, Mar 2006.
[22] T. M. Keenan, C.-H. Hsu, and A. Folch, "Microfluidic “jets” for generating steady-state gradients of soluble molecules on open surfaces," Applied Physics Letters, vol. 89, p. 114103, 2006.
[23] A. Shamloo, N. Ma, M. M. Poo, L. L. Sohn, and S. C. Heilshorn, "Endothelial cell polarization and chemotaxis in a microfluidic device," Lab Chip, vol. 8, pp. 1292-9, Aug 2008.
[24] A. Valero, F. Merino, F. Wolbers, R. Luttge, I. Vermes, H. Andersson, et al., "Apoptotic cell death dynamics of HL60 cells studied using a microfluidic cell trap device," Lab Chip, vol. 5, pp. 49-55, Jan 2005.
[25] W. H. Tan and S. Takeuchi, "A trap-and-release integrated microfluidic system for dynamic microarray applications," Proc Natl Acad Sci U S A, vol. 104, pp. 1146-51, Jan 23 2007.
[26] D. Di Carlo, N. Aghdam, and L. P. Lee, "Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays," Anal Chem, vol. 78, pp. 4925-30, Jul 15 2006.
[27] A. M. Skelley, O. Kirak, H. Suh, R. Jaenisch, and J. Voldman, "Microfluidic control of cell pairing and fusion," Nat Methods, vol. 6, pp. 147-52, Feb 2009.
[28] S. Zheng, H. Lin, J. Q. Liu, M. Balic, R. Datar, R. J. Cote, et al., "Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells," J Chromatogr A, vol. 1162, pp. 154-61, Aug 31 2007.
[29] W. H. Grover, A. M. Skelley, C. N. Liu, E. T. Lagally, and R. A. Mathies, "Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices," Sensors and Actuators B: Chemical, vol. 89, pp. 315-323, 2003.
[30] S. Zeng, B. Li, X. Su, J. Qin, and B. Lin, "Microvalve-actuated precise control of individual droplets in microfluidic devices," Lab Chip, vol. 9, pp. 1340-3, May 21 2009.
[31] S. Chung, R. Sudo, P. J. Mack, C. R. Wan, V. Vickerman, and R. D. Kamm, "Cell migration into scaffolds under co-culture conditions in a microfluidic platform," Lab Chip, vol. 9, pp. 269-75, Jan 21 2009.
[32] J. H. Yeon, H. R. Ryu, M. Chung, Q. P. Hu, and N. L. Jeon, "In vitro formation and characterization of a perfusable three-dimensional tubular capillary network in microfluidic devices," Lab Chip, vol. 12, pp. 2815-22, Aug 21 2012.
[33] S. Kim, H. Lee, M. Chung, and N. L. Jeon, "Engineering of functional, perfusable 3D microvascular networks on a chip," Lab Chip, vol. 13, pp. 1489-500, Apr 21 2013.
[34] C. Kim, J. Kasuya, J. Jeon, S. Chung, and R. D. Kamm, "A quantitative microfluidic angiogenesis screen for studying anti-angiogenic therapeutic drugs," Lab Chip, vol. 15, pp. 301-10, Jan 7 2015.
[35] T. K. Borg, "It's the Matrix!," The American Journal of Pathology, vol. 164, pp. 1141-1142, 2004.
[36] R. Raghow, "The role of extracellular-matrix in postinflammatory wound-healing and fibrosis," Faseb Journal, vol. 8, pp. 823-831, Aug 1994.
[37] J. Roman, "Extracellular matrix and lung inflammation," Immunol Res, vol. 15, pp. 163-78, 1996.
[38] S. Chung, R. Sudo, V. Vickerman, I. K. Zervantonakis, and R. D. Kamm, "Microfluidic Platforms for Studies of Angiogenesis, Cell Migration, and Cell–Cell Interactions," Annals of Biomedical Engineering, vol. 38, pp. 1164-1177, 2010.
[39] H. Bruus, "Chapter 1. Governing Equations in Microfluidics," ed, 2014, pp. 1-28.
[40] H. Azzouz, "The dependence of the cross-sectional shape on the hydraulic resistane of microchannels," 2004.
[41] K. W. Oh, K. Lee, B. Ahn, and E. P. Furlani, "Design of pressure-driven microfluidic networks using electric circuit analogy," Lab Chip, vol. 12, pp. 515-45, Feb 7 2012.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *