|
[1] M. G. Tonnesen, X. Feng, and R. A. F. Clark, "Angiogenesis in Wound Healing," J Investig Dermatol Symp Proc, vol. 5, pp. 40-46, 2000. [2] N. Ferrara, H. Chen, T. Davis-Smyth, H.-P. Gerber, T.-N. Nguyen, D. Peers, et al., "Vascular endothelial growth factor is essential for corpus luteum angiogenesis," Nat Med, vol. 4, pp. 336-340, 1998. [3] J. Folkman, "Tumor angiogenesis: therapeutic implications," N Engl J Med, vol. 285, pp. 1182-6, Nov 18 1971. [4] J. Folkman, "What Is the Evidence That Tumors Are Angiogenesis Dependent?," JNCI Journal of the National Cancer Institute, vol. 82, pp. 4-7, 1990. [5] S. R. McDougall, A. R. Anderson, and M. A. Chaplain, "Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies," J Theor Biol, vol. 241, pp. 564-89, Aug 7 2006. [6] D. Senger, S. Galli, A. Dvorak, C. Perruzzi, V. Harvey, and H. Dvorak, "Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid," Science, vol. 219, pp. 983-985, 1983. [7] D. Leung, G. Cachianes, W. Kuang, D. Goeddel, and N. Ferrara, "Vascular endothelial growth factor is a secreted angiogenic mitogen," Science, vol. 246, pp. 1306-1309, 1989. [8] M. J. Plank and B. D. Sleeman, "Tumour-Induced Angiogenesis: A Review," Journal of Theoretical Medicine, vol. 5, pp. 137-153, 2003. [9] V. Schirrmacher, "Cancer Metastasis: Experimental Approaches, Theoretical Concepts, and Impacts for Treatment Strategies," vol. 43, pp. 1-73, 1985. [10] K. J. Kim, B. Li, J. Winer, M. Armanini, N. Gillett, H. S. Phillips, et al., "Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo," Nature, vol. 362, pp. 841-4, Apr 29 1993. [11] P. H. Feng, K. Y. Lee, Y. L. Chang, Y. F. Chan, L. W. Kuo, T. Y. Lin, et al., "CD14(+)S100A9(+) monocytic myeloid-derived suppressor cells and their clinical relevance in non-small cell lung cancer," Am J Respir Crit Care Med, vol. 186, pp. 1025-36, Nov 15 2012. [12] D. R. Senger and G. E. Davis, "Angiogenesis," Cold Spring Harb Perspect Biol, vol. 3, p. a005090, Aug 2011. [13] D. Ribatti, "The history of angiogenesis inhibitors," Leukemia, vol. 21, pp. 1606-9, Aug 2007. [14] G. Biooncology, "Understanding Angiogenesis and VEGF," Available : http://www.biooncology.com/research-education/vegf/ligand. [15] W. H. Organization, "The top 10 causes of death," Available : http://www.who.int/mediacentre/factsheets/fs310/en/. [16] A. C. Society, "Non-small cell lung cancer survival rates by stage," Available : http://www.cancer.org/cancer/lungcancer-non-smallcell/detailedguide/non-small-cell-lung-cancer-survival-rates. [17] N. L. Jeon, S. K. W. Dertinger, D. T. Chiu, I. S. Choi, A. D. Stroock, and G. M. Whitesides, "Generation of Solution and Surface Gradients Using Microfluidic Systems," Langmuir, vol. 16, pp. 8311-8316, 2000. [18] N. Li Jeon, H. Baskaran, S. K. Dertinger, G. M. Whitesides, L. Van de Water, and M. Toner, "Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device," Nat Biotechnol, vol. 20, pp. 826-30, Aug 2002. [19] Y. Wang, T. Mukherjee, and Q. Lin, "Systematic modeling of microfluidic concentration gradient generators," Journal of Micromechanics and Microengineering, vol. 16, pp. 2128-2137, 2006. [20] D. Irimia, D. A. Geba, and M. Toner, "Universal microfluidic gradient generator," Anal Chem, vol. 78, pp. 3472-7, May 15 2006. [21] V. V. Abhyankar, M. A. Lokuta, A. Huttenlocher, and D. J. Beebe, "Characterization of a membrane-based gradient generator for use in cell-signaling studies," Lab Chip, vol. 6, pp. 389-93, Mar 2006. [22] T. M. Keenan, C.-H. Hsu, and A. Folch, "Microfluidic “jets” for generating steady-state gradients of soluble molecules on open surfaces," Applied Physics Letters, vol. 89, p. 114103, 2006. [23] A. Shamloo, N. Ma, M. M. Poo, L. L. Sohn, and S. C. Heilshorn, "Endothelial cell polarization and chemotaxis in a microfluidic device," Lab Chip, vol. 8, pp. 1292-9, Aug 2008. [24] A. Valero, F. Merino, F. Wolbers, R. Luttge, I. Vermes, H. Andersson, et al., "Apoptotic cell death dynamics of HL60 cells studied using a microfluidic cell trap device," Lab Chip, vol. 5, pp. 49-55, Jan 2005. [25] W. H. Tan and S. Takeuchi, "A trap-and-release integrated microfluidic system for dynamic microarray applications," Proc Natl Acad Sci U S A, vol. 104, pp. 1146-51, Jan 23 2007. [26] D. Di Carlo, N. Aghdam, and L. P. Lee, "Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays," Anal Chem, vol. 78, pp. 4925-30, Jul 15 2006. [27] A. M. Skelley, O. Kirak, H. Suh, R. Jaenisch, and J. Voldman, "Microfluidic control of cell pairing and fusion," Nat Methods, vol. 6, pp. 147-52, Feb 2009. [28] S. Zheng, H. Lin, J. Q. Liu, M. Balic, R. Datar, R. J. Cote, et al., "Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells," J Chromatogr A, vol. 1162, pp. 154-61, Aug 31 2007. [29] W. H. Grover, A. M. Skelley, C. N. Liu, E. T. Lagally, and R. A. Mathies, "Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices," Sensors and Actuators B: Chemical, vol. 89, pp. 315-323, 2003. [30] S. Zeng, B. Li, X. Su, J. Qin, and B. Lin, "Microvalve-actuated precise control of individual droplets in microfluidic devices," Lab Chip, vol. 9, pp. 1340-3, May 21 2009. [31] S. Chung, R. Sudo, P. J. Mack, C. R. Wan, V. Vickerman, and R. D. Kamm, "Cell migration into scaffolds under co-culture conditions in a microfluidic platform," Lab Chip, vol. 9, pp. 269-75, Jan 21 2009. [32] J. H. Yeon, H. R. Ryu, M. Chung, Q. P. Hu, and N. L. Jeon, "In vitro formation and characterization of a perfusable three-dimensional tubular capillary network in microfluidic devices," Lab Chip, vol. 12, pp. 2815-22, Aug 21 2012. [33] S. Kim, H. Lee, M. Chung, and N. L. Jeon, "Engineering of functional, perfusable 3D microvascular networks on a chip," Lab Chip, vol. 13, pp. 1489-500, Apr 21 2013. [34] C. Kim, J. Kasuya, J. Jeon, S. Chung, and R. D. Kamm, "A quantitative microfluidic angiogenesis screen for studying anti-angiogenic therapeutic drugs," Lab Chip, vol. 15, pp. 301-10, Jan 7 2015. [35] T. K. Borg, "It's the Matrix!," The American Journal of Pathology, vol. 164, pp. 1141-1142, 2004. [36] R. Raghow, "The role of extracellular-matrix in postinflammatory wound-healing and fibrosis," Faseb Journal, vol. 8, pp. 823-831, Aug 1994. [37] J. Roman, "Extracellular matrix and lung inflammation," Immunol Res, vol. 15, pp. 163-78, 1996. [38] S. Chung, R. Sudo, V. Vickerman, I. K. Zervantonakis, and R. D. Kamm, "Microfluidic Platforms for Studies of Angiogenesis, Cell Migration, and Cell–Cell Interactions," Annals of Biomedical Engineering, vol. 38, pp. 1164-1177, 2010. [39] H. Bruus, "Chapter 1. Governing Equations in Microfluidics," ed, 2014, pp. 1-28. [40] H. Azzouz, "The dependence of the cross-sectional shape on the hydraulic resistane of microchannels," 2004. [41] K. W. Oh, K. Lee, B. Ahn, and E. P. Furlani, "Design of pressure-driven microfluidic networks using electric circuit analogy," Lab Chip, vol. 12, pp. 515-45, Feb 7 2012.
|