帳號:guest(18.118.26.112)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳佑祥
作者(外文):Chen,You Siang
論文名稱(中文):基於隨機麥克風排序陣列之兩階段遠場聲源識別技術
論文名稱(外文):A two-stage sound source identification technique using a farfield random array
指導教授(中文):白明憲
指導教授(外文):Bai,Mingsian R.
口試委員(中文):劉奕汶
陳榮順
口試委員(外文):Liu, Yi-Wen
Chen, Rong-Shun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:103033539
出版年(民國):105
畢業學年度:105
語文別:英文中文
論文頁數:49
中文關鍵詞:模擬退火法最大旁瓣延遲總和方法參數估測陣列等效聲源模型提可諾夫正規化壓縮感知
外文關鍵詞:Simulated annealing methodSide-lobe maximumDelay-and-sum methodParametric arrayEquivalent source modelTikhonov regularizationCompressive sensing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:446
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文實現麥克風隨機排列陣列的遠場聲源定位和分離的兩個階段。麥克風陣列的位置分佈以模擬退火(Simulated annealing, SA)法優化設計,麥克風各點的位置以高斯分佈的方式隨機取點,繪製遠場波束圖 (Beam-pattern) 並尋求最大旁瓣 (maximum sidelobe) 的最小化。兩階段的演算法皆以球面波模型的基礎進行推導。在定位階段,先以延遲總和方法(Delay and sum, DAS)定出大致的聲源位置區域,接著使用參數估測方法使定位更加精確。在分離階段中,聲源振幅可以藉由麥克風接收到的聲壓與聲源傳遞至麥克風的傳遞矩陣之間的反矩陣問題求得。而當聲源的數量小於麥克風時則形成超定問題 (overdetermined problem),可以透過提可諾夫正規化(Tikhonov Regularization, TIKR)求解,而假設的聲源數量大於麥克風,可以將定位後的轉向矩陣進行增廣而形成未定問題 (underdetermined problem),進而使用壓縮感知 (Compressive sensing) 技術分離聲源。此外,聲學參數如聲壓、粒子速度、平均聲強及聲功率皆可以等效聲源法 (Equivalent source method, ESM) 計算出來,本論文以模擬與實驗驗證此演算法的可行性。
A farfield random array is implemented for sound source identification. Microphone positions are optimized, with the aid of the simulated annealing (SA) method as a supervised Monte Carlo approach, random samples of sensor position are drawn from Gaussian distribution to minimize the sidelobe maximum of the farfield beam-pattern. A two-stage localization and separation algorithm is devised on the basis of the equivalent source model (ESM). In the localization stage, the active source regions are located by using the delay-and-sum (DAS) method, followed by a parametric array localization procedure that is capable of locating sources with improved resolution. In the separation stage, source amplitude extraction is achieved by formulating an inverse problem based on the steering matrix relating the sound pressures received by the microphones and the source amplitudes. The number of sources is selected to be less than the number of microphones to render an overdetermined problem which can be solved by using the Tikhonov regularization (TIKR). Alternatively, the separation problem can be augmented into an underdetermined problem which can be solved using the compressive sensing (CS) technique. Furthermore, the acoustic variables including sound pressure, particle velocity, sound intensity, and sound power can be estimated based on ESM. Numerical and experimental results are presented to validate the proposed technique.
摘 要 i
ABSTRACT ii
誌 謝 iii
TABLE OF CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURES vii
Chapter 1 INTRODUCTION 1
Chapter 2 RANDOM ARRAY MODELING AND DESIGN 5
2.1 Farfield array model 5
2.2 Optimizing array sensor deployment 5
Chapter 3 STAGE 1: SOURCE LOCALIZATION 12
3.1 Deterministic maximum likelihood (DML) estimation 12
3.2 Stochastic maximum likelihood (SML) estimation 13
3.3 Weighted subspace fitting (WSF) estimation 14
3.4 Parameter estimation in conjunction with SA optimization 15
Chapter 4 STAGE 2: SOURCE SIGNAL SEPARATION 17
4.1 Tikhonov regularization (TIKR) 17
4.2 Compressive sensing (CS) 18
4.3 Post processing for acoustic variables 19
4.4 Procedure of the two-stage algorithm 20
Chapter 5 NUMERICAL AND EXPERIMENTAL VALIDATION 23
5.1 Simulation of two monopole sources 23
5.2 Verification of sound power estimation 24
5.3 Two sources scenario 24
5.3.1 Audio sources 24
5.3.2 Practical sources 25
5.4 Subjective test 26
Chapter 6 CONCLUSIONS 46
REFERENCES 47
[1] K. B.Ginn and K. Haddad, “Noise source identification techniques: simple to advanced applications,” Proceedings of the Acoustics 2012, 1781-1786 (2012).
[2] J. Hald, “Fast wideband acoustical holography.” J. Acoust. Soc. Am. 139 (4), 1508-1517 (2016).
[3] J. Lanslots, F. Deblauwe and K. Janssens, “Selecting sound source localization techniques for industrial applications,” Sound and Vib. 44 (6), 6-10 (2010).
[4] H. Krim and M. Viberg, “Two decades of array signal processing research: the parametric approach,” IEEE Signal Processing Mag. 13 (4), 67-94 (1996).
[5] I. Ziskind and M. Wax, “Maximum likelihood localization of multiple sources by alternating projection,” IEEE Trans. on Acoust., Speech, Signal Proc. 36 (10), 1553-1559 (1988).
[6] K. C. Shaman, “Maximum likelihood parameter estimation by simulated annealing,” Proc. Int. Conf. Acoust., Speech, Signal Proc., 2741-2744 (1988).
[7] I. Ziskind and M. Wax, “Maximum likelihood localization of diversely polarized sources by simulated annealing,” IEEE Trans. on Acoust., Speech, Signal Proc. 38 (7), 1111-1113 (1990).
[8] K. Kokkinakis and P. C. Loizou, “Using blind source separation techniques to improve speech recognition in bilateral cochlear implant patients,” J. Acoust. Soc. Am. 123 (4), 2379-2390 (2008).
[9] M. R. Bai and C. H. Kuo, “Deconvolution-based acoustic source localization and separation algorithms,” J. Acoust. Soc. Am. 135, 2358 (2014).
[10] R. Mutihac, M. M. Van Hulle, “Comparison of principal component analysis and independent component analysis for blind source separation,” Rom. Rep. Phys. 56, 20-32 (2004).
[11] L. Chen and C. Lu, “An improved independent component analysis algorithm based on artificial immune system,” Int. J. Machine Learning and Comp. 3 (1), 93-97 (2013).
[12] E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Processing Mag. 25 (2), 21-30 (2008).
[13] G. F. Edelmann and C. F. Gaumond, “Beamforming using compressive sensing,” J. Acoust. Soc. Am. 130, 232-237 (2011).
[14] E. Candes, J. Romberg and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Comm. Pure and Applied Math. 59 (8), 1207-1223 (2006).
[15] M R Bai, J G Ih, and J Benesty. Acoustic Array Systems: Theory, Implementation and Application. Wiley/IEEE Press, Singapore, 177-270 (2013).
[16] J.J. Christensen and J. Hald, Beamforming. Brüel & Kjær Technical Review No.1 (2004).
[17] B. Li, D. Yang and X. Lian, “An acoustic holography method with random sparse microphone array to locate moving sound sources,” IEEE Int. Conf. on Signal Proc., 187-190 (2008).
[18] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, 671-680 (1983).
[19] E. Rodriguez-Tello, J. K. Hao and J. Torres-Jimenez, “An effective two-stage simulated annealing algorithm for the minimum linear arrangement problem,” Comp. Oper. Res. 35, 3331-3346 (2008).
[20] V. Murino, A. Trucco and C. S. Regazzoni, “Synthesis of unequally spaced arrays by simulated annealing,” IEEE Trans. Signal Proc. 44 (1), 119-123 (1996).
[21] M. R. Bai, J. H. Lin and K. L. Liu, “Optimized microphone deployment for near-field acoustic holography: To be, or not to be random, that is the question,” J. Sound Vib. 329 (14), 2809-2824 (2010).
[22] S. Haykin, J. Litva and T. J. Shepherd, Radar Array Processing, Springer-Verlag, Berlin, Chap. 2-4 (1993).
[23] M. Viberg, B. Ottersten and T. Kailath, “Detection and Estimation in Sensor Arrays Using Weighted Subspace Fitting.” IEEE Trans. Signal Processing, 39, 2436-2449 (2002).
[24] M. Bertero, T. Poggio and V. Torre, “Ill-Posed Problems in Early Vision,” Proceedings of the IEEE 76 (8), 869-889 (1988).
[25] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 69-102 (2004).
[26] L. Song, G. H. Koopmann and J. B. Fahnline, “Active control of the acoustic radiation of a vibrating structure using a superposition formulation,” J. Acoust. Soc. Am. 89 (6), 2786-2792 (1991).
[27] A. W. Rix, J. G. Beerends, D.S. Kim, P. Kroon, and O. Ghitza, “Objective Assessment of Speech and Audio Quality—Technology and Applications,” IEEE 14, 1890-1901 (2006).
[28] T. Thiede, W. C. Treurniet, R. Bitto, C. Schmidmer, T. Sporer, J. G. Beerends, C. Colomes, M. Keyhl, G. Stoll, K. Brandenburg, and B. Feiten, “PEAQ-The ITU standard for objective measurement of perceived audio quality,” J. Audio Eng. Soc. 48, 3–29 (2000).
[29] ITU-R Recommendation BS.1534-1, “Method for the subjective assessment of intermediate quality levels of coding systems,” International Telecommunication Union, Geneva, Switzerland, 18 pages (2003)
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *