帳號:guest(3.15.208.156)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):梁立煌
作者(外文):Liang, Li Huang
論文名稱(中文):出於反運算重建之觀點的多通道噪音消除技術
論文名稱(外文):Multi-channel noise reduction technique from the inverse reconstruction perspective
指導教授(中文):白明憲
指導教授(外文):Bai, Ming Sian
口試委員(中文):陳榮順
劉奕汶
口試委員(外文):Chen, Rong Shun
Liu, Yi Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:103033532
出版年(民國):105
畢業學年度:105
語文別:英文中文
論文頁數:43
中文關鍵詞:提可諾夫正規化壓縮感知對數最小均方誤差廣義旁瓣消除器正規多輸入輸出反運算理論
外文關鍵詞:Tikhonov regularizationcompressive sensinglog minimum mean-square errorGeneralized Sidelobe Cancellerregulated multiple-input/output inverse theorem
相關次數:
  • 推薦推薦:0
  • 點閱點閱:474
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在本論文中,以聲源定位和分離的觀點提出噪音消除的演算法,最小能量無失真響應演算法(Minimum Power Distortionless Response, MPDR)被使用於決定訊號與噪音源之軸承,提可諾夫正規化(Tikhonov regularization ,TIKR)及壓縮感知(compressive sensing ,CS)演算法被用以擷取訊號與噪音源之振幅。為了評估所提出的方法,採用對數最小均方誤差(log minimum mean-square error, log-MMSE)演算法、廣義旁瓣消除器(Generalized Sidelobe Canceller, GSC)及正規多輸入輸出反運算理論(regulated multiple-input/output inverse theorem, R-MINT)作為基準的方法。對數最小均方誤差使用後置濾波器去估計優化增益校正函數;而為了強化廣義旁瓣消除器,合併了次帶濾波及內部迭代法,即稱之為GSC-SB-IIT演算法;R-MINT被應用於房間響應反運算濾波。在數值模擬和實驗上,使用24個通道的均勻圓形麥克風陣列來執行,且用白噪音及交通噪音來模擬背景噪音。客觀量測的分段訊噪比及語音品質感知評估和主觀的聆聽測試被用來比較噪音消除的方法,結果顯示,感知壓縮演算法達到了最好的噪音消除性能。
In this thesis, a noise reduction algorithms is presented from the perspective of source localization and separation. Minimum Power Distortionless Response (MPDR) algorithm is utilized to determine the bearings of the signal and noise sources. Tikhonov regularization (TIKR) and compressive sensing (CS) algorithm are employed to extract the amplitudes of the signal and noise sources. In order to evaluate the proposed method, the log minimum mean-square error (log-MMSE) algorithm, the Generalized Sidelobe Canceller (GSC), and the regulated multiple-input/output inverse theorem (R-MINT) are adopted as benchmarking methods. The Log-MMSE is used to estimate an optimize gain correction function as a post-filter. To enhance GSC, subband (SB) filtering and internal iteration (IIT) are incorporated, which is termed the GSC-SB-IIT method. The R-MINT used to be applied in room response inverse filtering. Numerical simulations and experiments are conducted for a 24-channel uniform circular microphone array. White noise and traffic noise are used in simulating the background noise. Objective tests based on the segmental signal-to-noise ratio (segSNR) and Perceptual Evaluation of Speech Quality (PESQ) and subjective listening tests are conducted to compare the noise reduction approaches. The results show that the CS algorithm has achieved the highest reduction of noise.
TABLE OF CONTENTS

摘  要 i
ABSTRACT ii
誌 謝 iii
TABLE OF CONTENTS iv
LIST OF TABLES v
LIST OF FIGURES vi
Chapter 1 INTRODUCTION 1
Chapter 2 THREE CONVENTIONAL NOISE REDUCTION METHODS 5
2.1 Single Channel Noise Reduction Based on Log-MMSE Algorithm 5
2.2 Robust Generalized Sidelobe Canceller 6
2.3 Regularized Multiple-Input/Output Inverse Theorem (R-MINT) Method 9
Chapter 3 NOISE REDUCTION BASED ON INVERSE RECONSTRUCTION
15
3.1 Source Localization 15
3.2 Source Signal Separation 16
3.2.1 Tikhonov regularization (TIKR) method 16
3.2.2 Compressive sensing (CS) method 17
Chapter 4 NUMERICAL AND EXPERIMENTAL INVESTIGATIONS 19
Chapter 5 CONCLUSIONS 39
REFERENCES 40
REFERENCES
1. J. Li, M. Akagi, and Y. Suzuki, “Multi-channel Noise Reduction in Noisy Environments,” Chinese Spoken Language Processing, Springer, 4274, 258-269, (Singapore, 2006).
2. J. Benesty, S. Makino and J. Chen (eds.), Speech Enhancement, Springer, (2005).
3. S. F. Boll, “Suppression of acoustic noise in speech using spectral subtraction,” IEEE Trans. Acoust., Speech, Sig. Proc. (ASSP), 27(2), 113-120 (1979).
4. Y. Ephraim and D. Malah, “Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator,” IEEE Trans. Acoust., Speech, Sig. Proc. (ASSP), 32(6), 1109-1121 (1984).
5. Y. Ephraim and D. Malah, “Speech enhancement using a minimum mean-square error log-spectral amplitude estimator,” IEEE Trans. Acoust., Speech, Sig. Proc. (ASSP), 443-445 (1985).
6. M. Brandstein and D. Ward (eds.), Microphone Arrays: Signal Processing Techniques and Applications, Springer, 398 pages, (2001).
7. G. Reuven, S. Cannot, and I. Cohen, “Joint noise reduction and acoustic echo cancellation using the transfer-function generalized sidelobe canceller,” Speech Communication, 49(7-8), 623-635 (2007).
8. P. Mowlaee, M. Orooji, and M. H. Kahaei, “Removing the GSC Noise Reduction deficiencies in Reverberant Environments by Proposing Joint AEC-GSC algorithm,” 2007 IEEE/ACS International Conference on Computer Systems and Applications (AICCSA), 603-610, (2007).
9. L. J. Griffiths and C.W. Jim, “An alternative approach to linearly constrained adaptive beamforming,” IEEE Trans. Antennas and Propagation, 30(1), 27-34, (1982).
10. N. K. Jablon, “Adaptive beamforming with the generalized sidelobe canceller in the presence of array imperfections,” IEEE Trans. Antennas and Propagation, 34(8), 996-1012, (1986).
11. P. Castellini and M. Martarelli, “Acoustic beamforming: Analysis of uncertainty and metrological performances,” Mechanical Systems and Signal Processing, 22(3), 672-692, (2008).
12. M. R. Bai, L. W. Chi, L. H. Liang, and Y. Y. Lo, “Array model interpolation and subband iterative adaptive filters applied to beamforming-based acoustic echo cancellation,” J. Acoust. Soc. Am. 139(2), 863-874, (2016).
13. K. A. Lee, W. S. Gan, and S. M. Kuo, Subband Adaptive Filtering: Theory and Implementation, Wiley, New York, 324 pages (2009).
14. I. Kodrasi, S. Goetze, and S. Doclo, “Regularization for partial multichannel equalization for speech dereverberation,” IEEE Trans. Audio, Speech, and Language Processing (ASLP), 21(9), 1879-1890, (2013).
15. W. Zhang, E. A. P. Habets, and P. A. Naylor, “On the use of channel shortening in multichannel acoustic system equalization,” in Proc. International Workshop on Acoustic Echo and Noise Control, Tel Aviv, Israel, Sept. 2010.
16. F. Lim and P. A. Naylor, “Robust speech dereverberation using subband multichannel least squares with variable relaxation,” in Proc. European Signal Processing Conference (EUSIPCO), Marrakech, Morocco, (2013).
17. F. Lim, M. R. P. Thomas, and P. A. Naylor, “MINTFormer: A spatially aware channel equalizer,” in Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 1-4, (2013)
18. M. R. Bai and C. H. Kuo, “Acoustic source localization and deconvolution-based separation”, J. Comp. Acoust., 23(2), 1–23 (2015).
19. E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Processing Magazine, 25(2), 21-30 (2008).
20. G. F. Edelmann and C.F. Gaumond, “Beamforming using compressive sensing,” J. Acoust. Soc. Am. 130, EL232-237 (2011).
21. ITU-T Recommendation P.862, “Perceptual evaluation of speech quality (PESQ): An objective method for end-to-end speech quality assessment of narrow-band telephone networks and speech codecs,” International Telecommunication Union, Geneva, Switzerland, 21pages, (2001).
22. ITU-T Recommendation P.862.2, “Wideband extension to Recommendation P.862 for the assessment of wideband telephone networks and speech codecs,” International Telecommunication Union, Geneva, Switzerland, 4 pages, (2007).
23. P. C. Loizou, Speech Enhancement: Theory and Practice, CRC Press, 632 pages, (2007)
24. W. Herbordt, Combination of Robust Adaptive Beamforming with Acoustic Echo Cancellation for Acoustic Human/Machine Interfaces, FAU, Erlangen, 293 pages (2003)
25. M. R. Bai, J. G. Ih, and J. Benesty, Acoustic Array Systems: Thoery, Implementation, and Application, Wiley IEEE, New York, 516 pages (2013).
26. B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile approach to spatial filtering,” IEEE, Signal Processing magazine, 5(2), 4-24, (1988).
27. P. M. Clarkson, Optimal and Adaptive Signal Processing, CRC Press, 560 pages (1993).
28. P. P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice-Hall, Englewood Cliffs, NJ, 911 pages (1992).
29. Y. P. Lin and P. P. Vaidyanathan, “A Kaiser window approach for the design of prototype filter of cosine modulated filterbanks,” IEEE, Signal Processing Letters, Vol. 5, pp. 132-134, (1998).
30. D. Zwillinger, Table of Integrals, Series, and Products, 8th ed., Elsevier, (2014)
31. D. Middleton, An Introduction to Statistical Communication Theory, IEEE Press, Wiley, (1996)
32. I. Kodrasi and S. Doclo, “Joint dereverberation and noise reduction based on acoustic multichannel equalization,” Acoustic Signal Enhancement (IWAENC), 139-143, (2014).
33. R. P. Brent, Algorithms for Minimization without Derivatives, Prentice-Hall, Englewood Cliffs, New Jersey, 48-75 (1973).
34. M. R. P. Thomas, N. D. Gaubitch, and P. A. Naylor, “Application of channel shortening to acoustic channel equalization in the presence of noise and estimation error,” IEEE WASPAA, 113-116, (2011)
35. J. C. Brown and P. Smaragdis, “Independent component analysis for automatic note extraction from musical trills,” J. Acoust. Soc. Am. 115, 2295-2306 (2004).
36. S. Boyd and L. Vandenberghe, Convex optimization, Cambridge University Press, New York, Chap. 1-7 (2004).
37. M. Grant, and S. Boyd, cvx, Version 1.21 MATLAB software for disciplined convex programming available at http://cvxr.com/cvx, (last viewed June 14 ,2013).
38. ITU-R Recommendation BS.1534-1, “Method for the subjective assessment of intermediate quality level of coding systems,” International Telecommunications Union, Geneva, Switzerland, 18 pages (2001).
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *