帳號:guest(3.12.136.218)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鐘士誠
作者(外文):Chong,Shih-Cheng
論文名稱(中文):分子拓印微珠之微小化 及其應用於食品藥物殘留檢測
論文名稱(外文):Miniaturization of Molecularly-Imprinted Polymer Beads and Their Applications to Detection of Drug Residue in Foods
指導教授(中文):洪健中
劉通敏
指導教授(外文):Hong,Chien-Chong
Liou,Tong-Miin
口試委員(中文):黃國柱
林志勳
口試委員(外文):Hwang,Kuo-Chu
Lin, Jyh-Shiun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:103033530
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:153
中文關鍵詞:分子拓印高分子微液滴動物用藥專一性選擇性
外文關鍵詞:Molecularly imprinted polymerDropletsAnimal drug residuesSpecificitySelectivity coefficient
相關次數:
  • 推薦推薦:0
  • 點閱點閱:286
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究為液滴微流控製備分子拓印微珠,達到微小化及其應用於食品藥物殘留檢側,研究內容包含微流道晶片設計、晶片製程與封裝、溶液性質探討、微液滴形成參數探討如流道設計、兩相流率比及錶面活性劑濃度、微粒固化、藥物吸附性測試如專一性與選擇性以及微粒管柱。
微流道設計,透過繪圖軟體AutoCAD進行光罩設計,並使用微影製程製作微流道晶片,藉由真空氧電漿進行晶片黏合,並以注射式幫浦與攝影機進行微流體驅動及微液滴觀測。本研究針對微液滴形成進行相關參數探討,由結果得知在頸為50 µm時,可以產生微小且均勻為液滴;另外,在固定乳化相微流量為6 µL/hr而連續相微流量為30~600 µL/hr下,隨著連續相加快,產生液滴尺寸也越小,最小可到達15μm。在微液滴固化實驗方面,使用UV曝光機照射紫外光(λ=365 nm),當固化能量達到60 W/cm2時,微液滴可以固化形成微粒,以上為本論文製備分子拓印微粒程序。本論文開發微小化分子拓印微粒應用於食品藥物殘留檢側上,由實驗結果可知,針對Ractopamine與Doxycycline兩種藥物拓印微粒之吸附測試,其專一性吸附經過調整最高可以到達580%與415%與選擇係數分別為17.07(DC)、3.68(PEN)與6.65(RAC)、2.06(PEN),吸附時間為60秒。微粒微小化對於藥物吸附量測試,當粒徑單位重量之總表面積提升8.9倍時,吸附分子量也增加1.86倍。整合微粒於微流體晶片形成微粒管柱,探討不同流道貼紙厚度與分散液體積,最佳測試結果流道貼紙厚度與分散液體積分別為120 μm與0.5 mL。本論文所開發之微液滴晶片能夠提供分子拓印微液滴產生與合成最小粒徑的微粒,且未來可以應用於合成奈米材料如奈米碳管
In this thesis, molecularly-imprinted polymer beads fabricated by emulsion droplet methods to realize the tiny beads and their applications to Detection of Drug Residue in Foods. The study contain simulation, the design of microchannel、the chips are fabricated and characterized. Then, discussion on solution property (dielectric constant and chemical structure). The behavior of droplet formation, such as the omicrochannel width, two-phase flow ratio, surfactant consentration, particulate polymerization, drug adsorption testing such as specificity and selectivity, and particulate package, have been well investigated.
The microchannel designs are draw by using AutoCAD .In the experiment, the chips are fabricated by using photolithography process, and then oxygen plasma for bonding. The experimental results show that tiny and homogeneous droplets can be generated, as the microchannel width equal to 50 µm ; droplets decreases as the flow rate of continuous phase increases under the flow conditions of 6 µL/hr for emulsion phase and 30~600 µL/hr for carrier phase, The smallest particle size can reach 15μm. In the droplets polymerization experiment. As the curing energy reaches 60 W / cm2, the micro-droplet can be polymerizated to form microparticles by using ultraviolet light (λ = 365 nm).According to experiental result, the specificity of the developed Ractopamine-imprinted beads is up to 580% and selectivity coefficient equal to 17.07(DC)、3.68(PEN); The specificity of the developed Doxycycline-imprinted beads is up to 415% and selectivity coefficient equal to 6.65(RAC)、2.06(PEN), the adsorption time is 60 seconds. When the total surface area per unit weight of the particle is increased by 8.9 times, the molecular weight of the adsorbed molecule increases by 1.86 times. The microbeads form a column on-chip, when the thickness of the stickers and the volume of the dispersion liquid were 120 μm and 0.5 mL, respectively.
The developed droplet chips in this research have the potenials of hight-througput droplets and synthesis the smallest MIP beads.In future, the droplet chips can be fuether synthesis of nanomaterials, such as carbon nanotube.
目錄
中文摘要 iv
ABSTRACT vi
誌謝 viii
目錄 ix
圖目錄 xii
表目錄 xvii
第一章 緒論 1
1.1 研究背景 1
1.2 分子拓印高分子 11
1.2.1. 分子拓印高分子原理 11
1.2.2. 分子拓印高分子合成 15
1.2.3. 分子拓印高分子應用 17
1.3 乳化微液滴 19
1.3.1. 微液滴發展 19
1.3.2. 微液滴操控方式 23
1.3.3. 微液滴應用於高分子微粒形成 27
1.4 研究動機 31
1.5 研究目的與方法 32
1.6 論文計劃書架構 33
第二章 微液滴形成性質 34
2.1. 微液滴形成物理性質影響 34
2.1.1. 無因次參數探討 34
2.1.2. 流道寬度與厚度影響 36
2.1.3. 驅動流體壓力 37
2.2. 微液滴形成化學性質影響 39
2.2.1. 表面活性劑原理與分類 39
2.2.2. 微流道表面性質 44
2.3. 分子拓印溶液物理性質與化學性質探討 48
2.3.1. 分子拓印溶液物理參數探討 48
2.3.2. 流道表面官能基與分子拓印溶液鍵結探討 49
第三章 分子拓印高分子微液滴形成實驗 51
3.1. 微流道設計與製作 51
3.1.1. 微流道設計與負光阻製程 51
3.1.2. 微流道封裝 55
3.2. 乳化微液滴平台架設 57
3.3. 乳化微液滴參數探討 58
3.3.1. 水-油之微液滴微小化與均勻化探討 58
3.3.2. 流道表面修飾於乳化分子拓印溶液沾粘性與液滴穩定性探討 64
3.3.3. 微流道頸口尺寸與分子拓印微液滴均勻性測試 68
3.3.4. 兩相流率比與分子拓印微液滴尺寸影響 71
3.3.5. 表面活性劑比例於液滴穩定性影響 74
3.4. 結論 76
第四章 分子拓印高分子微粒固化實驗 78
4.1. 懸浮聚合微粒 78
4.1.1. 熱聚合固化參數探討 79
4.1.2. 藥物分子拓印微粒形態與粒徑分佈 82
4.2. 微液滴聚合微粒 84
4.2.1. 光固化能量探討 86
4.2.2. 藥物分子拓印微粒形貌與粒徑分佈 88
4.3. 結論 90
第五章 分子拓印微粒於食品殘留藥物檢測之應用 91
5.1. 分子拓印微粒於食品殘留藥物檢測之應用 91
5.2. 分子拓印高分子微粒藥物檢測實驗 93
5.2.1. 待測肉汁前處理程序 93
5.2.2. 藥物拓印微粒清洗次數 93
5.2.3. 藥物拓印微粒專一性吸附測試 96
5.2.4. 藥物拓印微粒吸附時間影響 101
5.2.5. 藥物拓印微粒選擇性測試 103
5.3. 全整合於晶片上之分子拓印管柱 107
5.3.1. 整合分子拓印管柱之檢測架構 107
5.3.2. 藥物拓印微粒管柱填充 109
5.4. 超聲波檢測訊號 113
5.5. 結論 115
第六章 總結與研究成果 116
6.1. 總結 116
6.2. 研究成果 117
6.3. 學術貢獻 119
6.4. 未來研究建議 126
參考文獻 130
附錄 140
A 建構實現於陣列式多組藥物拓印高分子微粒之微幫浦驅動系統 140
A.1 微型幫浦之壓力量測 140
A.2 定壓力驅動-乳化油水微液滴測試 144
B. 藥物性質列表 149
C. 量測儀器資訊 145
發表著作 151
作者簡介 152

參考文獻
1. 陳陸宏、蔡淑貞,事出必有因-食安問題因何而起,科學發展, 2014.第504期.
2. Skoog, D.A., F.J. Holler, and S.R. Crouch, Principles of Instrumental Analysis 4th Edition. 1992.
3. Tom R. Covey, Jonathan B. Crowther, Elizabeth A. Dewey, and Jack D. Henion, Thermospray Liquid Chromatography/Mass Spectrometry Determination of Drugs and Their Metabolites in Biological Fluids. Analytical Chemistry, 1985. 57: p. 474-481.
4. María Luz Gómez-Pérez, Roberto Romero-González, José Luis Martínez Vidal, Antonia Garrido Frenich, Analysis of pesticide and veterinary drug residues in baby food by liquid chromatography coupled to Orbitrap high resolution mass spectrometry. Talanta, 2015. 131: p. 1-7.
5. Engvallê,Perlmann P, Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry, 1971. 8: p. 871-874.
6. B.K. VAN WEEMEN,A.H.W.M. SCHUURS, Immunoassay using antigen-enzyme conjugates. FEBS Letters, 1971. 15: p. 232-236.
7. 陳思穎,仿生蛋白質辨識高分子薄膜開發及其應用於即時定點發炎診斷,碩士論文,新竹,國立清華大學動機系, 2011.
8. MANZ, A., N. GRABER, and H.M. WIDMER, Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors and Actuators, 1990: p. 244-248.
9. Chaubey, A. and B.D. Malhotra, Mediated biosensors. Biosensors and bioelectronics, 2002. 17: p. 441-456.
10. Jr, C.L. and L. C, Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences, 1962. 102: p. 29-45.
11. http://www.fda.gov.tw/TC/newsContent.aspx?id=21288&chk=ab805e68-c0eb-41cc-9789-b2fce1f84069¶m=pn&cid=3&cchk=46552e96-810a-42c3-83e1-bd5e42344633#.WBWoEvl96Co
12. Anders Blomgren , Christine Berggren , Anna Holmberg , Fredrik Larsson ,Borje Sellergren , Kees Ensing, E xtraction of clenbuterol from calf urine using a molecularly imprinted polymer followed by quantitation by high-performance liquid chromatography with UV detection. Journal of Chromatography A, 2002: p. 157-164.
13. Susan Sadeghi , Moslem Jahani, Selective solid-phase extraction using molecular imprinted polymer sorbent for the analysis of Florfenicol in food samples. Food Chemistry, 2013: p. 1242-1251.
14. Baixin Zhang, Jingchan Zhao,Bijing Sha and Miao Xian, Selective solid-phase extraction using molecularly imprinted polymers for the analysis of norfloxacin in fish. Analytical Methods, 2012. 4: p. 3187-3192.
15. Raquel Garcia, Maria João Cabrita, Ana Maria Costa Freitas, Application of molecularly imprinted polymers for the analysis of pesticide residues in food—a highly selective and innovative approach. American Journal of Analytical Chemistry, 2011. 2: p. 16-25.
16. Hu Shuguo, and He Xiwen, Molecularly imprinted polymers: a new kind of sorbent with high selectivity in solid-phase extraction. Progress in Chemistry, 2005. 17: p. 31-43.
17. Borje Sellergren, Direct Drug Determination by Selective Sample Enrichment on an Imprinted Polymer. Analytical Chemistry, 1994. 66: p. 1578-1582.
18. Chiyang He, Yuanyuan Long, Junlan Pan, Kean Li, Feng Liu, Application of molecularly imprinted polymers to solid-phase extraction of analytes from real samples. Journal of Biochemical and Biophysical Methods, 2007. 70: p. 133-150.
19. Linus Pauling and Dan H. Campbell, The manufacture of antibodies in vitro. Journal of Experimental Medicine, 1942. 76: p. 200-211.
20. Lars Andersson, Borje Sellergren and Klaus Mosbach, Imprinting of amino acid derivatives in macroporous polymers. Tetrahedron Letter, 1984. 25: p. 5211-5214.
21. Chien-Chong Hong, Po-Hsiang Chang, Chih-Chung Lin and Chian-Lang Hong, A Disposable Microfluidic Biochip with On-Chip Molecularly Imprinted Biosensors for Optical Detection of Anesthetic Propofol. Biosensors and Bioelectronics, 2010. 25: p. 2058-2064.
22. Karim El Kirat, Magali Bartkowski, Karsten Haupt, Probing the recognition specificity of a protein molecularly imprinted polymer using force spectroscopy. Biosensors and Bioelectronics, 2009. 24: p. 2618-2624.
23. 李世惠、董瑞安,分子拓印高分子感測器的製作與應用. 科儀新知, 2006. 27: p. 20-21.
24. Ellen L. Holthoff, Frank V. Bright , Molecularly templated materials in chemical sensing. Analytica Chimica Acta, 2007. 594: p. 147-161.
25. Hongyuan Yan, Kyung Ho Row, Gengliang Yang, Water-compatible molecularly imprinted polymers for selective extraction of ciprofloxacin from human urine. Talanta, 2008. 75: p. 227-232.
26. Fengxia Qiao, Hanwen Sun, Simultaneous extraction of enrofloxacin and ciprofloxacin from chicken tissue by molecularly imprinted matrix solid-phase dispersion. Journal of Pharmaceutical and Biomedical Analysis, 2010. 53: p. 795-798.
27. Atefeh Abouzarzadeh, Mehdi Forouzanib, Mohsen Jahanshahia and Nader Bahramifar, Synthesis and evaluation of uniformly sized nalidixic acid–imprinted nanospheres based on precipitation polymerization method for analytical and biomedical applications. Journal of Molecular Recognition, 2012. 25: p. 404-413.
28. Ming-Ming Zheng, Rui Gong, Xing Zhao, Yu-Qi Feng, Selective sample pretreatment by molecularly imprinted polymer monolith for the analysis of fluoroquinolones from milk samples. Journal of Chromatography A, 2010. 217: p. 2075-2081.
29. Yun-Kai Lv , Yong Ma, Xiao-Bo Zhao, Cui-Ling Jia, Han-Wen Sun, Grafting of norfloxacin imprinted polymeric membranes on silica surface for the selective solid-phase extraction of fluoroquinolones in fish samples. Talanta, 2012: p. 270-275.
30. Geert Van Royen, Peter Dubruel, and Els Daeseleire, Development and evaluation of a molecularly imprinted polymer for the detection and cleanup of benzylpenicillin in milk. Journal of Agricultural and Food Chemistry, 2014. 64: p. 8814-8821.
31. Antoni Beltran1,Rosa M. Marc,Peter A. G. Cormack, and Francesc Borrull, Selective solid-phase extraction of amoxicillin and cephalexin from urine samples using a molecularly imprinted polymer. Journal of Separation Science, 2008. 31: p. 2868-2874.
32. Stanley G. Wua, Edward P.C. Laia, Paul M. Mayer, Molecularly imprinted solid phase extraction–pulsed elution–mass spectrometry for determination of cephalexin and –aminocephalosporin antibiotics in human serum. Journal of Pharmaceutical and Biomedical Analysis, 2006. 36: p. 483-490.
33. Wensheng Cai, Ram B. Gupta, Molecularly-imprinted polymers selective for tetracycline binding. Separation and Purification Technology, 2004. 3: p. 215-221.
34. Felismina T.C. Moreira, Ayman H. Kamel, Joana R.L. Guerreiro, M. Goreti F. Sales, Man-tailored biomimetic sensor of molecularly imprinted materials for the potentiometric measurement of oxytetracycline. Biosensors and Bioelectronics, 2010. 26: p. 215-221.
35. Shanshan Qu, Xiaobo Wang, Changlun Tong, Jianmin Wu, Metal ion mediated molecularly imprinted polymer for selective capturing antibiotics containing beta-diketone structure. Journal of Chromatography A, 2010. 11: p. 8205-8211.
36. Tao-jing Chen, Jing-chan Zhao, Zhi-an Guo and Bai-xin Zhang, Grafting of doxycycline imprinted polymers on silica surface for selective solid-phase extraction in beef samples. Analytical Methods, 2012. 4: p. 4273-4243.
37. Ya-Feng Jin,Yi-Jun Zhang,Yu-Ping Zhang,Jun Chen,Xiao-Mao Zhou, and Lian-Yang Bai, Synthesis and Evaluation of a Molecularly Imprinted Polymer for Solid Phase Extraction of Ethopabate from Chicken Tissue. Journal of Chemistry, 2010. 45: p. 1108-1114.
38. Taher Alizadeh, Mohamad Reza Ganjali, Mashaalah Zare, Parviz Norouzi, Selective determination of chloramphenicol at trace level in milk samples by the electrode modified with molecularly imprinted polymer. Food Chemistry, 2012. 130: p. 983-984.
39. Haiyan Chen, Sunil Son , Fengshuang Zhang , Jin Yan a, Yi Li , Hong Ding , Lan Ding, Rapid preparation of molecularly imprinted polymers by microwave-assisted emulsion polymerization for the extraction of florfenicol in milk. Journal of Chromatography B, 2015. 983: p. 32-38.
40. Juan Li,Huaixia Chen,Hui Chen,Yong Ye, Selective determination of trace thiamphenicol in milk and honey by molecularly imprinted polymer monolith microextraction and high-performance liquid chromatography. Journal of Separation Science, 2012. 35: p. 137-144.
41. Taher Alizadeh , Leyla Abolghasemi Fard, Synthesis of Cu2+-mediated nano-sized salbutamol-imprinted polymer and its use for indirect recognition of ultra-trace levels of salbutamol. Analytica Chimica Acta, 2013. 769: p. 100-107.
42. Ya Lia, Qiang Fua, Meng Liua, Yuan-Yuan Jiaoa, Wei Dua, Chong Yua,Jing Liua, Chun Changa, Jian Lu, Separation and enrichment of trace ractopamine in biological samples by uniformly-sized molecularly imprinted polymers. Journal of Pharmaceutical Analysis, 2012. 2: p. 395-402.
43. Chin-I Lin ,Wen-Ping Chu, K Abraham Joseph ,Yu-Chi Wong, Molecularly Imprinted Polymeric Beads for Decaffeination. Journal of Medical and Biological Engineering, 2003. 23.
44. Jun Haginaka and Haruyo Sanbe, Uniform-Sized Molecularly Imprinted Polymers for 2-Arylpropionic Acid Derivatives Selectively Modified with Hydrophilic External Layer and Their Applications to Direct Serum Injection Analysis. Analytical Chemistry. , 2000. 72: p. 5206-5210.
45. Steven A. Barker, Matrix solid phase dispersion (MSPD). Journal of Biochemical and Biophysical Methods, 2007. 70: p. 151-162.
46. Hongyan Zhang ,Yuwei Wei ,Jianhua Zhou ,Zhixiang Xu ,Shuo Tian, Hua Huang,Jinxing He, Preparation and Application of a Molecular Imprinting Matrix Solid Phase Dispersion Extraction for the Determination of Olaquindox in Chicken by High Performance Liquid Chromatography. Food Anal. Methods, 2013. 6: p. 915-921.
47. Zhigang Xu, Yufei Hu, Yuling Hu, Gongke Li, Investigation of ractopamine molecularly imprinted stir bar sorptive extraction and its application for trace analysis of 2-agonists in complex samples. Journal of Chromatography A, 2010. 1217: p. 3612-3618.
48. R. Ahmed, T.B. Jones, Dispensing picoliter droplets on substrates using dielectrophoresis. Journal of Electrostatics, 2006. 64: p. 543-549.
49. M. G. Pollack, A. D. Shenderovb and R. B. Fair, Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip, 2002. 2: p. 96-101.
50. Piotr Garstecki, Michael J. Fuerstman,Howard A. Stonec and George M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip, 2006. 6: p. 437-446.
51. Charles N. Baroud,*a Francois Gallaireb and Remi Dangla, Dynamics of microfluidic droplets. Lab Chip, 2010. 10: p. 2032-2033.
52. Piotr Garstecki, Irina Gitlin, Willow DiLuzio, and George M. Whitesides, Formation of monodisperse bubbles in a microfluidic flow-focusing device. Applied Physics Letters, 2004. 85: p. 13-27.
53. Carsten Cramer, Peter Fischer, Erich J. Windhab, Dropformation in a co-flowing ambient fluid. Chemical Engineering Science, 2004. 59: p. 3045-3058.
54. Remi Dangla, Etienne Fradet1, Yonatan Lopez and Charles N Baroud, The physical mechanisms of step emulsification. Journal of Physics D: Applied Physics, 2013. 46.
55. 美國harvard, PHD ULTRA SERIES CONSTANT PRESSURE SYRINGE PUMP DATASHEET.
56. Elveflow, product line 2013.
57. FLUIGENT, MFCSTM-EZ Microfluidic Flow Control System datasheet.
58. Dirk Roeseling,Tobias Tuercke, Horst Krause, and Stefan Loebbecke, Microreactor-Based Synthesis of Molecularly Imprinted Polymer Beads Used for Explosive Detection. Organic Process Research & Development, 2009. 13: p. 1007-1013.
59. Kyohei Takimoto, Eri Takano, Yukiya Kitayama, and Toshifumi Takeuchi, Synthesis of Monodispersed Submillimeter-Sized Molecularly Imprinted Particles Selective for Human Serum Albumin Using Inverse Suspension Polymerization in Water-in-Oil Emulsion Prepared Using Microfluidics. Langmuir, 2014. 17: p. 4981-4987.
60. Xu Yu, Gong Cheng, Ming-Da Zhou, and Si-Yang Zheng, On-Demand One-Step Synthesis of Monodisperse Functional Polymeric Microspheres with Droplet Microfluidics. Langmuir, 2015. 31: p. 3982-3992.
61. http://www.coa.gov.tw/show_index.php.
62. Sir George Gabriel Stokes, ON THE EFFECT OF THE INTERNAL FRICTION OF FLUIDS ON THE MOTION OF PENDULUMS. 1985.
63. Reynolds, An Experimental Investigation of the Circumstances Which Determine Whether the Motion of Water Shall Be Direct or Sinuous,and of the Law of Resistance in Parallel Channels. Proc. R. Soc. Lond, 1883. 35: p. 84-99.
64. Rott, N, NOTE ON THE HISTORY OF THE REYNOLDS NUMBER Annu. Annual Review of Fluid Mechanics, 1990. 22: p. 1-11.
65. GI.Taylor, The formation of emulsions in definable fields of flow. Proceedings of the Royal Society of London, 1934. 146: p. 501-523.
66. A. R. Abate,A. Poitzsch,Y. Hwang,J. Lee,J. Czerwinska, and D. A. Weitz, Impact of inlet channel geometry on microfluidic drop formation. Physical Review E, 2009. 80.
67. A. Manz, and Y. Zhang, Microdroplet Technology: Principles and Emerging Applications in Biology and Chemistry. Springer Science and Business Media, 2012. 28:p.9-12.
68. McKinley, G.H. and M. Renardy, Wolfgang von Ohnesorge. Physics of Fluids, 2013. 23.
69. Wei Li,a Edmond W. K. Young,be Minseok Seo, Zhihong Nie,Piotr Garstecki,Craig A. Simmonsbe and Eugenia Kumacheva, Simultaneous generation of droplets with different dimensions in parallel integrated microfluidic droplet generators. Soft Matter, 2008. 4: p. 258-262.
70. Wonje Jeong,Jeongyun Kim,Sunjeong Kim,Sanghoon Lee,Glennys Mensingc and David. J. Beebe, Hydrodynamic microfabrication via “on the fly” photopolymerization of microscale fibers and tubes. Lab on Chip 2004. 4: p. 576-580.
71. Minseok Seo, Zhihong Nie, Shengqing Xu, Michelle Mok, Patrick C. Lewis, Continuous microfluidic reactors for polymer particles. Langmuir, 2005. 21: p. 11614-22.
72. Shengqing Xu, Zhihong Nie, Minseok Seo, Generation of monodisperse particles by using microfluidics: control over size: control over size, shape and composition. Angewandte Chemie International Edition, 2005. 44: p. 724-8.
73. Thomas Ward,Magalie Faivre,Manouk Abkarian,Howard A. Stone, Microfluidic flow focusing: Drop size and scaling in pressure versus flow-rate-driven pumping. Electrophoresis, 2005. 26: p. 3716-3724.
74. http://www.dolomite-microfluidics.com
75. Anushree Pandey, Ashu Mittal, Nitesh Chauhan and Sanjar Alam, Status of surfactants as penetration enhancers in transdermal drug delivery. Journal of Pharmacy And Bioallied Sciences, 2012. 4: p. 2-9.
76. William C.Griffin, Classification of Surface-Active Agents by "HLB". Journal of the Society of Cosmetic Chemists, 1949. 1: p. 311-326.
77. William C.Griffin, Calculation of HLB Values of Nonionic Surfactants. Journal of the Society of Cosmetic Chemists, 1954. 5: p. 249-256.
78. Lingling Shui,Albert van den Berg and Jan C. T. Eijkel, Interfacial tension controlled W/O and O/W 2-phase flows in microchannel. Lab on Chip, 2008. 9: p. 795-801.
79. Cheryl J. DeJournette, Joonyul Kim, Haley Medlen, Xiangpeng Li, Luke J. Vincent, and Christopher J. Easley, Creating Biocompatible Oil − Water Interfaces without Synthesis: Direct Interactions between Primary Amines and Carboxylated Perfluorocarbon Surfactants. Analytical Chemistry, 2013. 85: p. 10556-10564.
80. 游士弘, 整合奈米磁珠之微液滴操控平台及其應用於細胞封裝與篩選. 碩士論文,新竹,國立清華大學動機系, 2013.
81. Larry Millet, MICROFLUIDICS AND ENABLING TECHNOLOGY LAB MODULE Fabrication of PDMS-based Microfluidics. Microfluidics, 2011: p. 1-5.
82. H. Hillborg and U.W. Gedde, Hydrophobicity recovery of polydimethylsiloxane after exposure to corona discharges. POLYMER, 1991. 39: p. 191-199.
83. Dhananjay Bodas, Chantal Khan-Malek, Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment—An SEM investigation. Sensors and Actuators B, 2007. 123: p. 368-373.
84. Manhui Sun, hunxiong Luo, Luping Xu, Hang Ji, Artificial Lotus Leaf by Nanocasting. Langmuir, 2005. 21: p. 8978-8981.
85. A D Tserepi1, M-E Vlachopoulou and E Gogolides, Nanotexturing of poly(dimethylsiloxane) in plasmas for creating robust super-hydrophobic surfaces. Nanotechnology, 2006. 17: p. 3977-3983.
86.http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/InfraRed/infrared.htm
87. Lujia Guo, Jinsong Feng, Zecong Fang, Jie Xu, Xiaonan Lu, Application of microfluidic “lab-on-a-chip” for the detection of mycotoxins in foods, Trends in Food Science & Technology 46 (2015) 252e263
88. Ping Qu, Jianping Lei, Ruizhuo Ouyang, and Huangxian Ju, Enantioseparation and Amperometric Detection of Chiral Compounds by in Situ Molecular Imprinting on the Microchannel Wall, Anal. Chem. 2009, 81, 9651–9656
89. Ping Qu, Jianping Lei, Lei Zhang, Ruizhuo Ouyang, Huangxian Ju, Molecularly imprinted magnetic nanoparticles as tunable stationary phase located in microfluidic channel for enantioseparation, J. Chromatogr. A 1217 (2010) 6115–6121
90. Stanislav Dubinsky, Hong Zhang, Zhihong Nie, Ilya Gourevich, Dan Voicu, Martin Deetzand Eugenia Kumacheva, Polymer Particles with Various Shapes and Morphologies Produced in Continuous Microfluidic Reactors, J. Am. Chem. Soc., 2005, 127 (22), pp 8058–8063
91. Shih Hao Huang , Hwa Seng Khoo,Shang Yu ChangChien,Fan Gang Tseng, Synthesis of bio-functionalized copolymer particles bearing carboxyl groups via a microfluidic device, Microfluid Nanofluid (2008) 5:459–468
92. Kyohei Takimoto, Eri Takano, Yukiya Kitayama, and Toshifumi Takeuchi, Synthesis of Monodispersed Submillimeter-Sized Molecularly Imprinted Particles Selective for Human Serum Albumin Using Inverse Suspension Polymerization in Water-in-Oil Emulsion Prepared Using Microfluidics, Langmuir, 2015, 31 (17), pp 4981–4987
93. Junping Ma, Simon Ming-Yuen Lee, Changqing Yi, and Cheuk-Wing Li, Controllable synthesis of functional nanoparticles by microfluidic platforms for biomedical applications – a review, Langmuir, Lab Chip, 2017, 17, 209–226
94. Shinsuke Nagamine, Akiko Sugioka, and Yasuhiro Konishi, Preparation of TiO2 hollow microparticles by spraying water droplets into anorganic solution of titanium tetraisopropoxide, Materials Letters 61 (2007) 444–447
95. Meng Xiao Feng, Geng Nan Wang, Kun Yang, Hui Zhi Liu, Jian Ping Wang, Molecularly imprinted polymer-high performance liquid chromatography for the determination of tetracycline drugs in animal derived foods, Langmuir, Food Control 69 (2016)
96. Peilong Wang, Zhihua Ye, Xiaoou Su, Synthesis of ractopamine molecularly imprinted membrane and its application in the rapid determination of three -agonists in porcine urine samples, J. Sep. Sci. 2013, 36, 1455–1462
97. Xiaohua Xiao, Kuanglin Yan, Xianfang Xu, Gongke Li, Rapid analysis of ractopamine in pig tissues by dummy-template imprinted solid-phase extraction coupling with surface-enhanced Raman spectroscopy, Talanta 138 (2015) 40–45
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *