帳號:guest(18.189.178.237)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):孫毓伶
作者(外文):Sun, Yu Ling
論文名稱(中文):城垛型微流道內流體之速度與溫度場分析及生醫應用
論文名稱(外文):Velocity and temperature analysis on fluid flow in the recess microchannel and its biomedical application
指導教授(中文):黃智永
指導教授(外文):Huang, Chih Yung
口試委員(中文):陳紹文
陳致真
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:103033518
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:124
中文關鍵詞:微液滴系統溫度螢光感測技術微粒子影像測速法微型熱電偶生醫晶片
外文關鍵詞:Microfluidic droplet systemTemperature Sensitive PaintParticle Image VelocimetryMicro-thermocouplebiochip
相關次數:
  • 推薦推薦:0
  • 點閱點閱:67
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究目的為探討城垛型微流道之溫度與速度場分析及生醫應用,流道長度為1.04 cm,中間先後放入寬100 μm的大凹槽與寬50 μm的小凹槽各30個。進行溫度調控實驗設計為兩部分,分別為使用單一水相進行微流道內流場與溫度場的控制,以及使用油水兩相進行城垛型微流道內凹槽的流場與溫度場控制。本研究主要使用技術為「微粒子影像測速法(Micro-PIV)」量測微流道內的速度場,與「溫度螢光感測技術(TSP)」搭配「溫度感測器-微型熱電偶」量測進行溫度場檢測。
首先,利用ANSYS Fluent進行城垛型微流道內單一水相的速度與溫度場之模擬,將其結果與後續的實驗量測進行比較,並藉由速度量測的結果探討其溫度發展的特性。後續的TSP實驗結果可觀察出城垛型流道實際進入凹槽內的流體比模擬來的多,使得實驗進行時微流道大凹槽內的溫度場比模擬來的均勻,且實驗量測出的流道內橫向溫度變化並不如模擬結果來的劇烈。之後並使用微型熱電偶安裝於微流道裝置內進行量測並與TSP實驗結果驗證,所量測的溫度變化不論在主流道內或是凹槽內皆大致吻合,溫度最大差異僅為1.3 ℃。在微流道內油水兩相溫度與速度量測的部分,嘗試在城垛型微流道裝置底部安裝小型水浴,透過水浴可成功降低兩相實驗時,水會透過PDMS孔隙蒸散到空氣中而無法長時間在凹槽內提供穩定的油水兩相介面。在油水兩相實驗透過Micro-PIV技術成功量測到大凹槽油水兩相介面之渦旋,渦旋大小為6×10-5 s-1。然而在進行加溫實驗時,因為油的膨脹係數遠高於水,造成油水兩相介面逐漸向凹槽內退縮,無法進一步進行溫度調控。
最後將已建立的城垛型微流道內單一水相溫度場應用於觀察Staphylococcus capitis 細菌最適生長環境之研究,將溫度控制在25 ℃~40 ℃的區間,經過3.5個小時的實驗觀察,發現在35 ℃與37 ℃的區域細菌生長數目是其他常溫或是高溫區域的4~7倍,與文獻提到細菌生長最適溫度為37 ℃的結果一致。
The purpose of the study is to perform the velocity and temperature analysis on fluid flow in the recess microchannel and its biomedical application. There are 30 big recess (100 μm width) and 30 small recess (50 μm width) in a 1.04 cm length PDMS microchannel. The study includes the measurement of velocity and temperature profiles in a recess microchannel with single phase flow (water) and two phase flow (water and oil) using PIV technique and TSP technique. Micro- thermocouples were also implanted in the microchannel device for the biomedical application to monitor the temperature variation in different regions inside the microchannel.
Computational fluid dynamic was carried out to simulate the velocity and temperature profiles in the microchannel with single phase flow by commercial numerical software ANSYS Fluent. The numerical data from ANSYS Fluent have been compared with experimental results. The temperature development due to the effect from velocity variation can be observed. The lateral temperature distribution from experiment at the region with recess in the microchannel are more gentle than the one in the simulation, and it is because more fluid flowing into the recess in experiment. This is attributed to the round corner at the recess from the fabrication. The micro-thermocouples have been embed in the microchannel to examine the temperature data acquired by TSP technique and the deviation is around 1.3 ℃.
During the temperature measure with two phase flow (water and oil), it was observed that the amount of water inside the recess decreased before heating. Several water bath devices were installed underneath the microchannel to resolve this problem and steady water droplets inside recess have been successfully observed.. The velocity profiles of water droplet inside the big recesses have been measured by Micro-PIV technique and vorticity at oil and water interface is 6×10-5s-1. However, the temperature measurements of two phase flow were not success because water droplets keeps reducing in the recesses after the heating even with water bath installation.
Finally, the growth of Staphylococcus capitis under various temperature conditions from 25 ℃ ~ 40 ℃ in microchannel devices containing recesses has been examined with single phase (water) fluid condition. It has been identified that the bacterial growth at the temperature between 35 ℃ ~ 37 ℃ is 4 to 7 times higher than other temperature after 3.5 hours. The results observed in current study agree with the data from the literature that reported the best temperature condition for growth of Staphylococcus capitis of 37 ℃.
摘要 I
Abstract III
致謝 V
目錄 VII
圖目錄 X
表目錄 XVII
第1章、序論 1
1.1 研究動機 1
1.2 文獻回顧 3
1.2.1 微液滴系統 3
1.2.2 Micro-PIV的發展 8
1.2.3 TSP溫度螢光感測塗料 11
1.2.4 微型熱電偶回顧 15
1.3 研究目的 19
1.4 論文架構 20
第2章、實驗原理 21
2.1 微型加熱器原理 21
2.2 Micro-PIV量測 22
2.3 TSP溫度螢光感測塗料 23
2.4 微型熱電偶量測 25
第3章、實驗方法 27
3.1 微流道製作 27
3.1.1 微流道母模製作 27
3.1.2 高分子翻模製程 33
3.2 微型加熱器製作 36
3.3 Micro-PIV量測 38
3.3.1 Micro-PIV螢光粒子溶液調配 38
3.3.2 Micro-PIV實驗架設 38
3.3.3 流量控制與訊號產生器設定 39
3.3.4 相關深度計算 41
3.4 TSP螢光溫度感測技術量測 43
3.4.1 螢光溫度感測溶液調配 43
3.4.2 TSP量測實驗架設 44
3.4.3 TSP校正曲線與公式 45
3.5 影像及數據處理與誤差分析 49
3.5.1 PIV影像處理 50
3.5.2 TSP影像處理 52
3.6 微型熱電偶 54
3.6.1 微型熱電偶製作流程 54
3.6.2 微型熱電偶校正 56
3.7 生醫實驗實驗方法 59
3.7.1 細菌選擇以及染劑調配 59
3.7.2 實驗架設 60
3.7.3 生醫實驗影像處理與分析 61
第4章、水相速度場與溫度場結果與討論 62
4.1 水相實驗裝置 62
4.2 水相數值模擬分析 66
4.2.1 模型建立 66
4.2.2 模型與網格測試 67
4.2.3 模擬設定 69
4.2.4 速度場分析驗證 70
4.3 水相速度場量測結果 72
4.4 水相溫度場量測結果 78
4.4.1 模擬熱損計算 78
4.4.2 水相流體溫度場量測結果 83
第5章、兩相速度場與溫度場結果與討論 94
5.1 油水兩相實驗裝置 94
5.2 兩相速度場量測結果 97
5.3 兩相溫度場量測結果 100
5.3.1 實驗加熱條件 100
5.3.2 流體溫度場量測結果 100
第6章、生醫應用量測結果與討論 105
6.1 控制組 105
6.2 實驗組 109
第7章、結論與未來工作 115
7.1 結論 115
7.2 未來工作建議 116
參考文獻 118
[1] S.-Y. Teh, R. Lin, L.-H. Hung, and A. P. Lee, "Droplet microfluidics," Lab on a Chip, vol. 8, pp. 198-220, 2008.
[2] R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, "Droplet based microfluidics," Reports on progress in physics, vol. 75, pp. 016601, 2012.
[3] N.-T. Nguyen and Z. Wu, "Micromixers—a review," Journal of Micromechanics and Microengineering, vol. 15, pp. R1, 2005.
[4] C.Y.Ho, "Establishment of microfluidic systems for generating
protein droplets and their applications on the analysis
of hydrolysis reaction by lipase," Master, Department of Chemical Mechanical Engineering, National Cheng Kung University, pp.1-108, 2014.
[5] A. Huebner, D. Bratton, G. Whyte, M. Yang, C. Abell, and F. Hollfelder, "Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays," Lab on a Chip, vol. 9, pp. 692-698, 2009.
[6] H. Chen, Q. Fang, X.-F. Yin, and Z.-L. Fang, "Microfluidic chip-based liquid–liquid extraction and preconcentration using a subnanoliter-droplet trapping technique," Lab on a Chip, vol. 5, pp. 719-725, 2005.
[7] S. S. Murshed, S. H. Tan, N. T. Nguyen, T. N. Wong, and L. Yobas, "Microdroplet formation of water and nanofluids in heat-induced microfluidic T-junction," Microfluidics and nanofluidics, vol. 6, pp. 253-259, 2009.
[8] S. Ryu, I. Yoo, S. Song, B. Yoon, and J.-M. Kim, "A thermoresponsive fluorogenic conjugated polymer for a temperature sensor in microfluidic devices," Journal of the American Chemical Society, vol. 131, pp. 3800-3801, 2009.
[9] R. J. Adrian, "Particle-imaging techniques for experimental fluid mechanics," Annual review of fluid mechanics, vol. 23, pp. 261-304, 1991.
[10] C. Meinhart, A. Prasad, and R. Adrian, "A parallel digital processor system for particle image velocimetry," Measurement Science and Technology, vol. 4, pp. 619, 1993.
[11] J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. Beebe, and R. J. Adrian, "A particle image velocimetry system for microfluidics," Experiments in fluids, vol. 25, pp. 316-319, 1998.
[12] C. D. Meinhart, S. T. Wereley, and J. G. Santiago, "PIV measurements of a microchannel flow," Experiments in fluids, vol. 27, pp. 414-419, 1999.
[13] T. Liu, Pressure‐and Temperature‐Sensitive Paints: Wiley Online Library, 2004.
[14] J. Crafton, N. Lachendro, M. Guille, J. P. Sullivan, and J. D. Jordan, "Application of temperature and pressure sensitive paint to an obliquely impinging jet," American Institute of Aeronautics and Astronautics, pp. 99-0387, 1999.
[15] J. J. Lee, J. C. Dutton, and A. M. Jacobi, "Application of temperature-sensitive paint for surface temperature measurement in heat transfer enhancement applications," Journal of mechanical science and technology, vol. 21, pp. 1253-1262, 2007.
[16] C. Huang, J. W. Gregory, H. Nagai, K. Asai, and J. P. Sullivan, "Molecular sensors in microturbine measurement," The American Society of Mechanical Engineers, pp. 577-583, 2006.
[17] R. Samy, T. Glawdel, and C. L. Ren, "Method for microfluidic whole-chip temperature measurement using thin-film poly (dimethylsiloxane)/Rhodamine B," Analytical chemistry, vol. 80, pp. 369-375, 2008.
[18] C.-Y. Huang, C.-A. Li, H.-Y. Wang, and T.-M. Liou, "The application of temperature-sensitive paints for surface and fluid temperature measurements in both thermal developing and fully developed regions of a microchannel," Journal of Micromechanics and Microengineering, vol. 23, pp. 037001, 2013.
[19] J.-R. Lin, "The investigation of flow field and heat transfer in 90° bend microchannels using micro particle image velocimetry and temperature sensitive paint," Master, Power Mechanical Engineering, National Tsing Hua University, pp.1-145, 2014.
[20] R. Kersjes, J. Eichholz, A. Langerbein, Y. Manoli, and W. Mokwa, "An integrated sensor for invasive blood-velocity measurement," Sensors and Actuators A: Physical, vol. 37, pp. 674-678, 1993.
[21] A. Van der Wiel, C. Linder, N. De Rooij, and A. Bezinge, "A liquid velocity sensor based on the hot-wire principle," Sensors and Actuators A: Physical, vol. 37, pp. 693-697, 1993.
[22] N. Nguyen and R. Kiehnscherf, "Low-cost silicon sensors for mass flow measurement of liquids and gases," Sensors and Actuators A: Physical, vol. 49, pp. 17-20, 1995.
[23] A. Rasmussen, C. Mavriplis, M. Zaghloul, O. Mikulchenko, and K. Mayaram, "Simulation and optimization of a microfluidic flow sensor," Sensors and Actuators A: Physical, vol. 88, pp. 121-132, 2001.
[24] D. Chu, W.-K. Wong, K. E. Goodson, and R. F. W. Pease, "Transient temperature measurements of resist heating using nanothermocouples," Journal of Vacuum Science & Technology B, vol. 21, pp. 2985-2989, 2003.
[25] L. C. Martin and R. Holanda, "Applications of thin-film thermocouples for surface temperature measurement," the international society for optics and photonics, pp. 65-76, 1994.
[26] L. C. Martin, J. D. Wrbanek, and G. C. Fralick, "Thin film sensors for surface measurements [in aerospace simulation facilities]," Instrumentation in Aerospace Simulation Facilities, pp. 196-203 , 2001
[27] D. Debey, R. Bluhm, N. Habets, and H. Kurz, "Fabrication of planar thermocouples for real-time measurements of temperature profiles in polymer melts," Sensors and Actuators A: Physical, vol. 58, pp. 179-184, 1997.
[28] X. Zhang, H. Choi, A. Datta, and X. Li, "Design, fabrication and characterization of metal embedded thin film thermocouples with various film thicknesses and junction sizes," Journal of Micromechanics and Microengineering, vol. 16, pp. 900, 2006.
[29] H. Choi and X. Li, "Fabrication and application of micro thin film thermocouples for transient temperature measurement in nanosecond pulsed laser micromachining of nickel," Sensors and Actuators A: Physical, vol. 136, pp. 118-124, 2007.
[30] T. H. Kim and S. J. Kim, "Development of a micro-thermal flow sensor with thin-film thermocouples," Journal of Micromechanics and Microengineering, vol. 16, pp. 2502, 2006.
[31] K. K. Mistry and A. Mahapatra, "Design and simulation of a thermo transfer type MEMS based micro flow sensor for arterial blood flow measurement," Microsystem technologies, vol. 18, pp. 683-692, 2012.
[32] MicroChem, "SU-8 2000 Permanent Epoxy Negative Phtoresist," http://www.microchem.com.
[33] M. Raffel, C. E. Willert, S. Wereley, and J. Kompenhans, Particle image velocimetry: a practical guide: Springer, 2013.
[34] M. Rossi, R. Segura, C. Cierpka, and C. J. Kähler, "On the effect of particle image intensity and image preprocessing on the depth of correlation in micro-PIV," Experiments in fluids, vol. 52, pp. 1063-1075, 2012.
[35] K. Lee, J. Slinker, A. Gorodetsky, S. Flores-Torres, H. Abruna, P. Houston, et al., "Photophysical properties of tris (bipyridyl) ruthenium (II) thin films and devices," Physical Chemistry Chemical Physics, vol. 5, pp. 2706-2709, 2003.
[36] B.-H. Huang, "The experimental study of heat transfer with segmented flow in microchannel using temperature sensitive paint and micro particle image velocimetry.," Master, Power Mechanical Engineering, National Tsing Hua University, 2013.
[37] C.-Y. Huang, C.-M. Lai, and J.-S. Li, "Applications of pixel-by-pixel calibration method in microscale measurements with pressure-sensitive paint," Journal of Microelectromechanical Systems, vol. 21, pp. 1090-1097, 2012.
[38] C.-M. Wu, "The application of molecule-based temperature sensors for surface and fluid temperature measurement inside rectangular microchannel under constant heat flux boundary condition," Master, Power Mechanical Engineering, National Tsing Hua University, 2013.
[39] T. F. Scientific, "CellTracker™ CM-DiI Dye," https://www.thermofisher.com/order/catalog/product/C7001.
[40] R. Lima, S. Wada, K.-i. Tsubota, and T. Yamaguchi, "Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel," Measurement Science and Technology, vol. 17, pp. 797, 2006.
[41] S. Taniselass, Z. Sauli, I. Mansor, V. Retnasamy, and P. Poopalan, "Entrance Length Observation for Water Flow in Microchannels with Surface Irregularities," in 2010 Second International Conference on Computational Intelligence, Modelling and Simulation, pp. 570-572, 2010.
[42] M. K. Moharana, G. Agarwal, and S. Khandekar, "Axial conduction in single-phase simultaneously developing flow in a rectangular mini-channel array," International Journal of Thermal Sciences, vol. 50, pp. 1001-1012, 2011.
[43] A. Dewan, J. Kim, R. H. McLean, S. A. Vanapalli, and M. N. Karim, "Growth kinetics of microalgae in microfluidic static droplet arrays," Biotechnology and bioengineering, vol. 109, pp. 2987-2996, 2012.
[44] American Type Culture Collection, "Staphylococcus capitis subsp. capitis (ATCC®27840™)," file:///C:/Users/Me/Downloads/27840.pdf.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *