帳號:guest(3.135.207.201)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝宗育
作者(外文):Hsieh, Tsung Yu
論文名稱(中文):固定床捕碳劑再生反應器製程放大之均溫設計
論文名稱(外文):On uniform temperature design of scale-up CO2 capture sorbent in fixed bed regeneration reactors
指導教授(中文):許文震
指導教授(外文):Sheu, Wen Jenn
口試委員(中文):陳炎洲
余慶聰
口試委員(外文):Chen, Yen Cho
Yu, Ching Tsung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:103033515
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:59
中文關鍵詞:脫附固定床均溫設計
外文關鍵詞:DesorptionFixed bedUniform temperature design
相關次數:
  • 推薦推薦:0
  • 點閱點閱:235
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本文以數值模擬方式探討固定床捕碳劑再生反應器製程放大之均溫設計,討論在不同條件下的反應器內部溫度均勻性與CO2脫附性能。利用內部裝設導熱零件及鰭片設計,以及討論內外部加熱方法,使反應管內部溫度分布更均勻,以消除熱點,讓捕碳劑可以發揮其最大效能,以增加捕獲效率及使用循環次數。模擬結果顯示,在脫附850 ℃的情況下,若將一般之反應圓管直徑由1吋放大到4吋時,在相同條件下,脫附性能約只剩下58 %。而在反應器中加入軸向鰭片之中空圓管,可以有效的改善管內溫度分布不均的問題,並提升脫附性能。結果也顯示內部裝設導熱零件的中空圓環,其最佳中空圓環半徑(Ri)會隨材質、鰭片數及加熱方法而有所不同。在相同材質和鰭片數的情況下,各取最佳Ri值時,內部加熱僅需較少的加熱面積即可與外部加熱有相同效果。
The aim of this study is to design a uniform temperature distribution in scale-up fixed bed reactors with inserting the internal heat conducting part and different heating methods by numerical simulation. The performance of sorbents, the relevant capture efficiency and the number of running cycles can be improved due to the absence of hot spots. The simulation results show that the performance of desorption is only 58 % at 850 ℃ for the original design as the diameter of the reaction tube is increased from 1 inch to 4 inches. The reactor can be effectively improved by adding axial fins in hollow reactors because the temperature distribution becomes more uniform. The results also show that the best hollow ring radius will vary with the material, the number of fins and heating method. The method of internal heating is better than that of external heating for fixed material and the number of fins.
摘要 I
Abstract II
致謝 III
第一章緒論 1
1.1 前言 1
第二章簡介與文獻回顧 3
2.1 二氧化碳捕獲技術概況 3
2.2 固態捕碳劑 4
2.3二氧化碳捕獲反應器 7
2.4碳酸鈣熱分解 9
2.5研究目的 15
第三章數值模型模擬 17
3.1 模擬軟體介紹 17
3.2 模型 18
3.2.1 物理說明與基本假設 19
3.2.2 統御方程式 19
3.2.3 化學動力學 20
3.2.4 邊界條件 22
3.2.5 模擬過程 23
3.3 分析目標 26
3.3.1 簡化模型分析 26
3.3.2 進階模型分析 30
第四章結果與討論 33
4.1 簡化模型分析 33
4.1.1 反應器尺寸對CO2脫附性能的影響 33
4.1.2 內部導熱零件對CO2脫附性能的影響 37
4.1.3加熱方式對CO2脫附性能的影響 41
4.2 進階分析 50
第五章結論 54
5.1 結論 54
5.2 未來展望 55
參考文獻 56

[1] Q. Wang, J. Luo, Z. Zhong and A. Borgna, “CO2 capture by solid adsorbents and their applications: current status and new trends,” Energy & Environmental Science, Vol. 4, pp. 42-55, 2011.
[2] J. Wang, L. Huang, R.Yang, Z. Zhang, J. Wu, Y. Gao, Q. Wang and Z. Zhong, “Recent advances in solid sorbents for CO2 capture and new development trends,” Energy & Environmental Science, Vol. 7, pp. 3478-3518, 2014.
[3] K. Sasaki, K. Wakuta, N. Tokuda, R. V. Belosludov, S. Ueda, R. Inoue, Y. Kawazoe and T. Ariyama, “Experimental study and atomic level description of adsorption process of CO2 on doped alkaline earth oxides,” The Iron and Steel Institute of Japan, Vol. 52, pp. 1233-1240, 2012.
[4] 潘守保, “以混合醇胺溶液(MEA+AMP)吸收二氧化碳溫室效應氣體之可行性研究,” 國立交通大學環境工程研究所碩士論文, 1998
[5] D. Mess, A. F. Sarofim and J. P. Longwell, “Product Layer Diffusion During the Reaction of Calcium Oxide with CarbonDioxide,” Energy and Fuels, Vol.13, pp. 999-1005, 1999.
[6] 李中光, 劉新校, 楊鈺琥, 王照元, 侯佳蕙, “層狀複金屬氧化物(LDHs) 在污染防治上之應用:( 一) 基本性質、製備及鑑定,” 環保簡訊, 第17期.
[7] 陳以銘,陳威錦, 余慶聰, “柱狀捕碳劑工程量產與反應器測試,”環境工程會刊, 第105卷, 2014.
[8] P. H. Chang, Y. P. Chang, S. Y. Chen, C. T. Yu and Y. P. Chyou, “Ca-Rich Ca–Al-Oxide, High-Temperature-Stable Sorbents Prepared from Hydrotalcite Precursors: Synthesis, Characterization, and CO2 Capture Capacity,” ChemSusChem, Vol. 4, pp. 1844-1851, 2011.
[9] Z. Zhou, Y. Qi, M. Xie, Z. Cheng and W. Yuan,“Synthesis of CaO-based sorbents through incorporation of alumina/aluminate and their CO2 capture performance,” Chemical Engineering Science, Vol. 74, pp. 172-180, 2012.
[10] C. Qin, W. Liu, H. An, J. Yin and B. Feng, “Fabrication of CaO-Based Sorbents for CO2 Capture by a Mixing Method,” Environmental Science & Technology, Vol. 46, pp. 1932-1939, 2012.
[11] E. T. Santos, C. Alfonsin, A. J. S. Chambel, A. Fernandes, A. P. Soares Dias, C. I. C. Pinheiro and M. F. Ribeiro, “Investigation of a stable synthetic sol–gel CaO sorbent for CO2 capture,” Fuel, Vol. 94, pp. 624-628, 2012.
[12] Y. J. Li, C. S. Zhao, L. B. Duan, C. Liang, Q. Z. Li, W. Zhou, and H. C. Chen, “Cyclic calcination/carbonation looping of dolomite modified with acetic acid for CO2 capture,” Fuel Processing Technology, Vol. 89, pp. 1461–1469, 2008.
[13] M. Mofarahi, P. Roohi, and F. Farshadpoor, “Study of CaO Sorbent for CO2Capture from Flue Gases, ”Chemical Engineering Transactions, Vol. 17, pp. 403-408, 2009.
[14] C. Luo, Y. Zheng, N. Ding, Q. Wu, G. Bian, and C. Zheng, “Development and Performance of CaO/La2O3Sorbents during Calcium Looping Cycles for CO2Capture,” Industrial & Engineering Chemistry Research, Res,Vol. 49, pp. 11778-11784, 2010.
[15] B. Dou, Y. Song, Y. Liu, and C. Feng, “High temperature CO2capture using calcium oxide sorbent in a fixed-bed reactor,” Journal of Hazardous Materials, Vol. 183, pp. 759-765, 2010.
[16] L. Yang, H. Yu, S. Wang, H. Wang, and Q. Zhou, “Carbon Dioxide Captured from Flue Gas by Modified Ca-based Sorbents in Fixed-bed Reactor at High Temperature,” Chinese Journal of Chemical Engineering. Vol. 21, pp. 199-204, 2013.
[17] R. Sun, Y. Li, H. Liu, S. Wu and C. Lu, “CO2 capture performance of calcium-based sorbent doped with manganese salts during calcium looping cycle,” Applied Energy, Vol. 89, pp. 368-373, 2012.
[18] L. Yue and W. Lipiński, “A numerical model of transient thermal transport phenomena in a high-tempearture solid–gas reacting system for CO2 capture applications,” International Journal of Heat and Mass Transfer, Vol. 85, pp. 1058-1068, 2015.
[19] R. H. Borgwardt, “Calcination kinetics and surface area of dispersed limestone particles,” AIChE Journal, Vol. 31, pp. 103-111, 1985.
[20] J. R. Ingraham and P. Marier, “Kinetic studies on the thermal decomposition of calcium carbonate,” The Canadian Journal of Chemical Engineering, Vol. 41, pp. 170-173, 1963.
[21] F. García-Labiano, A. Abad, L. F. de Diego, P. Gayán, and J. Adánez, “Calcination of calcium-based sorbents at pressure in a broad range of CO2 concentrations,” Chemical Engineering Science, Vol. 57, pp. 2381-2393, 2002.
[22] J. Y. Xie and W. B. Fu, “Uniform mathematical model for limestone calcination,” Journal of Combustion Science and Technology, Vol. 8, pp. 270-274, 2002.
[23] 寧靜濤, 鐘北京, 傅維標, “微細石灰石粉末高溫煅燒分解研究,” 燃燒科學與技術, Vol. 9, pp. 205-208, 2003.
[24] I. Galan, F. P. Glasser and C. Andrade, “Calcium carbonate decomposition,” Journal of Thermal Analysis and Calorimetry, Vol. 111, pp. 1197-1202, 2013.
[25] J. Yin, X. Kang, C. Qin, B. Feng, A. Veeraragavan and D. Saulov, “Modeling of CaCO3 decomposition under CO2/H2O atmosphere in calcium looping processes,” Fuel Processing Technology, Vol. 125, pp. 125-138, 2014.
[26] T. L. P. Dantas, F. M. T. Luna, I. J. Silva, A. E. B. Torres, D. C. S. de Azevedo, and A. E. Rodrigues, “Carbon dioxide-nitrogen separation through pressure swing adsorption,” Chemical Engineering Journal, Vol. 172, pp. 698-704, 2011.
[27] R. Ben-Mansour, B. O. Eyitope and M. A. Antar, “Simulation of Adsorptive Storage of CO2 in Fixed Bed of MOF-5,” Journal of Energy Resources Technology, Vol. 138, pp. 012001-012012, 2015.
[28] S. Wang, S. Fan, Y. Zhao, L. Fan, S. Liu and X. Ma, “Carbonation Condition and Modeling Studies of Calcium-Based Sorbent in the Fixed-Bed Reactor,” Industrial & Engineering Chemistry Research, Vol. 53, pp. 10457-10464, 2014.
[29] P. Phromprasit, J. Powell, and S. Assabumrungrat, “Metals (Mg, Sr and Al) modified CaO based sorbent for CO2 sorption/ desorption stability in fixed bed reactor for high temperature application, ” Chemical Engineering Journal, Vol. 284, pp. 1212-1223, 2016.
[30] Z. Skoufa, A. Antzara, E. Heracleous and A. A. Lemonidou, “Evaluating the Activity and Stability of CaO-based Sorbents for Post-combustion CO2 Capture in Fixed-bed Reactor Experiments,” Energy Procedia, Vol. 86, pp. 171-180, 2016.
[31] C. T. Yu, H. T. Kuo, and Y. M. Chen, “Carbon dioxide removal using calcium aluminate carbonates on titanic oxide under warm-gas conditions,” Applied Energy, Vol. 162, pp. 1122-1130, 2016.
[32] M.Phanikumar, R Mahajan, “Non-Darcy natural convection in high porosity metal foams,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 3781-3793, 2002.
[33] K. R. Rout and H. A. Jakobsen, “A numerical study of pellets having both catalytic and capture properties for SE-SMR process: kinetic and product layer diffusion controlled regimes,” Fuel Processing Technology, Vol. 106, pp. 231-246, 2013.
[34] G. Zoth, R. Haenel, Kluwer Academic, Dordrecht, Ch. Appendix., 1988
[35] 郭換廷,余慶聰,“合成Ca-AI-Ti捕碳材料並應用於中高溫CO2捕獲程序” 化工會刊, 第60卷, 2013
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *