|
[1] 能源統計年報 - 綜合類 - 經濟部能源局(Bureau of Energy, Ministry of Economic Affairs, R.O.C.)全球資訊網 [2] 行政院環境保護署 ─ 溫室氣體排放統計 [3] S. Ahmed, M. Krumpelt, 2001, Hydrogen from hydrocarbon fuels for fuel cells, Int. J. Hydrogen Energy, Vol. 26, p. 291-301. [4] J. Pasel, B. Emonts, R. Peters, D. Stolten, 2001, A structured test reactor for the evaporation of methanol on the basis of a catalytic combustion. Catalysis Today, Vol. 69, p.193–200. [5] Y. Ma, C. Ricciuti, T. Miller, J. Kadlowec, H. Pearlman, 2008, Enhanced catalytic combustion using sub-micrometer and nano-size platinum particles. Energy & Fuels, Vol. 22, p. 3695-3700 [6] A.M. Karim, J.A. Federici, D.G. Vlachos, 2008, Portable power production from methanol in an integrated thermoeletric/microreactor system. Journal of Power Sources, Vol. 179, p.113–120. [7] C.H. Leu, S.C. King, C.C. Chen, 2010, Investigation of the packed bed and the micro-channel bed for methanol catalytic combustion over Pt/A12O3 catalysts. Applied Catalysis A: General, Vol. 382, p.43–48. [8] W.H. Chen, B.J. Lin, 2010, Effect of microwave double absorption on hydrogen generation from methanol steam reforming. International Journal of Hydrogen Energy, Vol.35, pp.1987-1997. [9] C.Y. Hsueh, H.S. Chu, W.M. Yan, and C.H. Chen, 2010, Transport phenomena and performance of a plate methanol steam micro-reformer with serpentine flow field design. Applied Energy, Vol. 87, pp.3137-3147. [10] M.T. Lee, R. Greif, C.P. Grigoropoulos, H.G. Park, F.K. Hsu, 2007, Transport in packed-bed and wall-coated steam-methanol reformers, Journal of Power Sources, Vol.166, p.194-20. [11] S.W. Perng, R.F. Horng, H.W. Ku, 2013, Effects of reaction chamber geometry on the performance and heat/mass transport phenomenon for a cylindrical methanol steam reformer. Applied Energy, Vol.103, pp. 317-327. [12] T. Terazaki, M. Nomura, K. Takeyama, O. Nakamura, T. Yamamoto, 2005, Development of multi-layered microreactor with methanol reformer for small PEMFC. Journal of Power Sources, Vol.145, p. 691-696. [13] G.G. Park, S.D. Yim, Y.G. Yoon, C.S. Kim, D.J. Seo, K. Eguchi, 2005, Hydrogen production with integrated microchannel fuel processor using methanol for portable fuel cell systems. Catalysis Today, Vol. 110, p. 108-113. [14] J. Won, H. Jun, M. Jeon, S. Woo, 2006, Performance of microchannel reactor Combined with combustor for methanol steam reforming. Catalysis Today, Vol.111, p.158–163. [15] J.M. Sohn, Y.C. Byun, J.Y. Cho, J. Choe, K.H. Song, 2007, Development of the integrated methanol fuel processor using micro-channel patterned devices and its performance for steam reforming of methanol. International Journal of Hydrogen Energy, Vol. 32, p.5103-5108. [16] A. M. Moreno, B.A. Wilhite, 2010, Autothermal hydrogen generation from methanol in a ceramic microchannel network. Journal of Power Sources, Vol.195, p.1964–1970. [17]R.Y. Chein, Y.C. Chen, J.Y Chen, J. N. Chung, 2012, Design and test of a miniature hydrogen production reactor integrated with heat supply, fuel vaporization, methanol-steam reforming and carbon monoxide removal unit. International Journal of Hydrogen Energy, Vol. 37, p.6562-6571 [18] R.Y. Chein, Y.C. Chen , C.M. Chang , J.N. Chung, 2013, Experimental study on the performance of hydrogen production from miniature methanol–steam reformer integrated with Swiss-roll type combustor for PEMFC. Applied Energy, Vol.105, p.86–98. [19] C. Cao, Y. Wang Y, J.D. Holladay, E.O. Jones and D.R. Palo, 2005, Design of micro-scale fuel processors assisted by numerical modeling. AIChE Journal, Vol. 51, p. 982-988. [20] A. Fazeli, M. Behnam, 2010, Hydrogen production in a zigzag and straight catalytic wall coated micro channel reactor by CFD modeling. Int. J. Hydrogen Energy, Vol. 35, p. 9496-9503. [21] G. Arzamendi, P.M. Die’guez, M. Montes, M.A. Centeno, J.A. Odriozola and L.M. Gandia, 2009, Integration of methanol steam reforming and combustion in a microchannel reactor for H2 production: A CFD simulation study. Catalysis Today, Vol.143, pp. 25-31 [22] R.Y. Chein, Y.C. Chen, J. N. Chung, 2013, Numerical study of methanol-steam reforming and methanol-air catalytic combustion in annulus reactors for hydrogen production. Applied Energy, Vol. 102, p.1022-1034. [23] A. Alihosseinzadeh, B. Nematollahi, M. Rezaei, E.N. Lay, 2015, CO methanation over Ni catalysts supported onhigh surface area mesoporous nanocrystalline g-Al2O3 for CO removal in H2-rich stream. Int. J. Hydrogen Energy, Vol. 40, p. 1809-1819. [24] A. Zhao, W. Ying, H. Zhang, H. Ma, D. Fang, 2012, Ni–Al2O3 catalysts prepared by solution combustion method for syngas methanation. Catalysis Communications, Vol.17, p. 34-38. [25] J. Gao, C. Jia, J. Li, M. Zhang, F. Gu, G. Xu, Z. Zhong, F. Su, 2013, Ni/Al2O3 catalysts for CO methanation: Effect of Al2O3 supports calcined at different temperatures. Journal of Energy Chemistry, Vol.22, p. 919-927. [26] D. Hu, J. Gao, Y. Ping, L. Jia, P. Gunawan, Z. Zhong, G. Xu, F. Gu, F.Su, 2012,Enhanced Investigation of CO Methanation over Ni/Al2O3 Catalysts for Synthetic Natural Gas Production., I&EC, Vol. 51, p. 4875-4886. [27] N. Shimoda, D. Shoji, K. Tani, M. Fujiwara, K.Urasaki, R. Kikuchi, S. Satokawa, 2015, Role of trace chlorine in Ni/TiO2 catalyst for CO selective methanation in reformate gas, Applied Catalysis B: Environmental. Vol.174-175, p. 486-495. [28] S. Tada, D. Minori, F. Otsuka, R. Kikuchi, K. Osada , K. Akiyama, S. Satokawa, 2014, Effect of Ru and Ni ratio on selective CO methanation over Ru–Ni/TiO2. Fuel, Vol.129, p.219-224. [29] S. Takenaka, T. Shimizu, K. Otsuka, 2004, Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts. Int. J. Hydrogen Energy, Vol.29, p. 1065-1073. [30] Y. Li, Q. Zhang, R. Chai, G. Zhao, F. Cao, Y. Liu, Y. Lu, 2016, Metal-foam-structured Ni–Al2O3 catalysts: Wet chemical etching preparation and syngas methanation performance. Applied Catalysis A: General, Vol.510, p. 216-226. [31] Z. Liu, B. Chu, X. Zhai, Y. Jin, Y. Cheng, 2012, Total methanation of syngas to synthetic natural gas over Ni catalyst in a micro-channel reactor. Fuel, Vol.95, p. 599-605. [32] S.K. Ryi, S.W. Lee, K.R. Hwang, J.S. Park, 2012, Production of synthetic natural gas by means of a catalytic nickel membrane. Fuel, Vol.94, p. 64-69. [33] J. Liu, W. Shen, D. Cui, J. Yu, F. Su, G. Xu, 2013, Syngas methanation for substitute natural gas over Ni–Mg/Al2O3 catalyst in fixed and fluidized bed reactors. Catalysis Communications, Vol.38, p. 35-39. [34] W.R. Kang, K.B. Lee, 2013, Effect of operating parameters on methanation reaction for the production of synthetic natural gas. Korean J. Chem. Eng, Vol.30, p. 1386-1394. [35] C. Cao, Y. Wang, J.D. Holladay, E.O. Jones, D.R. Palo, 2005, Design of Micro-Scale Fuel Processors Assisted by Numerical Modeling. AIChE journal, Vol.51, p. 982-988. [36] J. Zhang, N. Fatah, S. Capela, Y. Kara, O. Guerrini, A.Y. Khodakov, 2013, Kinetic investigation of carbon monoxide hydrogenation under realistic conditions of methanation of biomass derived syngas conditions of methanation of biomass derived syngas. Fuel, Vol.111, p. 845-854. [37] J. Gao, Y. Wang, Y. Ping, D. Hu, G. Xu, F. Gu, F. Su, 2012, A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Advances, Vol.2, p. 2358-2368. [38] H. Er-Rbib, C. Bouallou, 2014, Modeling and simulation of CO methanation process for renewable electricity storage. Energy, Vol.75, p.81-88. [39] J. Suh, M. Lee, R. Greif, P. Costas, C.P. Grigoropoulos, 2009, Transport phenomena in a steam-methanol reforming micro-reactor with internal heating. Int. J. Hydrogen Energy, Vol.31, p. 314-322. [40] M. Phanikumar, R. Mahajan, “Non-Darcy natural convection in high porosity metal Foams,” Int. J. Heat Mass Transfer 2002; 45:3781-93 [41] Francesconi JA, Mussati MC, Aguirre PA, “Analysis of design variables for water–gas-shift reactors by model-based optimization,” J Power Sources 2007;173:467–77. [42] R. B. Bird, W. E. Stewart, and E. N. Lightfoot, 2002, ansport Phenomena, 2nd ed., New York: John Wiley & Sons. [43] B. Peppley, K. Amphlett, L. Kearns, R. Mann, 1999, Methanol-steam reforming on Cu/ZnO/Al2O3. Part 1, the reaction network. Appl. Catalyst A, Vol. 179, p. 21-29. [44] B. Peppley, K. Amphlett, L. Kearns, R. Mann, 1999, Methanol-steam reforming on Cu/ZnO/Al2O3catalysts. Part 2, a comprehensive kinetic model. Appl. Catalyst A, Vol.179, p. 31-49. [45] J. Suh, M. Lee, R. Greif, C.P. Grigoropoulos, 2007, A study of steam methanol reformer in a micro-reactor. J. Power Sources, Vol.173, p. 458-466. [46] J. Amphlett, K. Creber, J. Davis, R. Mann, B. Peppley, D. Stokes, 1994, Hydrogen production by steam reforming of methanol for polymer electrolyte fuel cells. Int. J. Hydrogen Energy, Vol.19, p. 131-137. [47] H. Purnama, T. Ressler, R.E. Jentoft, H. Soerijanto, R. Schlogl, R. Schomacker, 2004, CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst. Appl. Catal. A, Vol.259, p. 83-94. [48] W.H. Chen, M.R. Lin, T.L. Jiang, M.H. Chen, 2008, Modeling and simulation of hydrogen generation from high temperature and low-temperature water gas shift reactions. Int. J. Hydrogen Energy, Vol.33, p. 6644-6656. [49] V.K. Vadlamudi, S. Palanki, 2011, Modeling and analysis of miniaturized methanol reformer for fuel cell powered mobile applications. Int. J. Hydrogen Energy, Vol.36, p. 3364-3370. [50] J. Kopyscinski, 2010, Production of synthetic natural gas in a fluidized bed reactor: understanding the hydrodynamic, mass transfer, and kinetic effects. Sc.D. thesis, Villigen: Suisse: Paul scherrer institute. [51] H. Er-rbib, C. Bouallou, 2014, Methanation catalytic reactor. C. R. Chimie, Vol. 17, p. 701-706. [52] J. Kopyscinski, 2010, Applying spatially resolved concentration and temperature measurements in a catalytic plate reactor for the kinetic study of CO methanation. Journal of Catalysis, Vol.271, p.262-279. [53] C. Borgnakke, R. E. Sonntag, 2009, Fundamentals of Thermodynamics, 7nd ed., Wiley & Sons, Inc. [54] C. Wu, D. Tian, Y. Cheng, 2010, CFD-DEM simulation of syngas-to-methane process in a fluidized-bed reactor, The 13th International Conference on Fluidization - New Paradigm in Fluidization Engineering. [55] Nickel on silica-alumina, catalyst, Alfa Aesar^TM. https://www.fishersci.com/us/en/home.html [56] A. Loukou, I. Frenzel, J. Klein, D. Trimis, 2012, Experimental study of hydrogen production and soot particulate matter emissions from methane rich-combustion in inert porous media, international journal of hydrogen energy, Vol.37, p.16686-16696
|