帳號:guest(18.188.192.255)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王哲男
作者(外文):Wang , Che Nan
論文名稱(中文):管狀甲醇蒸氣重組器性能數值分析
論文名稱(外文):Numerical analysis on performance of tubular methanol-steam reformers
指導教授(中文):許文震
指導教授(外文):Sheu, Wen-Jenn
口試委員(中文):許文震
陳炎洲
徐慶聰
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:103033507
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:88
中文關鍵詞:小型管狀反應器CO甲烷化甲醇蒸氣重組甲醇觸媒燃燒
外文關鍵詞:Small tubular reactorCO methanationmethanol-steam reformingmethanol catalytic combustion
相關次數:
  • 推薦推薦:0
  • 點閱點閱:228
  • 評分評分:*****
  • 下載下載:18
  • 收藏收藏:0
本文以數值模擬方式探討CO甲烷化反應器的性能,及整合甲醇蒸氣重組、CO去除及燃燒供熱的小型管狀反應器之產氫性能。在使用Ni/Al2O3為觸媒的CO甲烷化反應器中,本文分析在等溫過程中,溫度、流量、觸媒填充長度及入口氣體成份等操作參數對反應器性能的影響,模擬結果顯示在適當操作條件下,CO甲烷化反應器的CO轉換效率及CH4選擇性都可達到99%以上。結果也顯示對一固定的入口成份及觸媒量,則存在一入口流量使得CO轉換率及CH4選擇性達到最高值。溫度高低對於整體性能影響也非常大,其中在成份變化過程中,H2/CO之莫爾比越高對於CO轉換效率越佳。但在有H2O添加到入口氣體時,當H2O/CO莫爾比值越大將不利於CO甲烷化反應。
在整合甲醇重組、甲醇觸媒燃燒及CO去除的管狀甲醇重組器中,內管的甲醇蒸氣重組使用CuO/ZnO/Al2O3觸媒,外管的Pt/Al2O3觸媒用於甲醇觸媒燃燒以提供重組所需熱量。甲醇蒸氣重組後的合成氣約有1~5 % CO,本文利用CO甲烷化降低其CO濃度,使用的觸媒為Ni/Al2O3 。本文分析甲醇-水流量、甲醇-氧氣流量、CO甲烷化觸媒填充長度及反應器外管壁熱損失等操作參數對反應器性能及各成分濃度影響。由模擬結果可知在適當的操作條件下,反應器的甲醇轉換率可大於98%且CO轉換率也可大於95%。結果也顯示對於一固定的甲醇-水流量及CO甲烷化觸媒量,則存在一最佳的甲醇-氧氣流量能使甲醇轉換率及CO轉換率達到最佳。對固定甲醇-水流量及甲醇-氧氣流量的條件下,存在有最佳的CO甲烷化觸媒填充長度。
The performances for both the tube reactor for CO methanation and the small tubular reactor of methanol-steam reforming for hydrogen production are investigated numerically in this study. For the CO methanator using Ni/Al2O3 as catalyst, the effects of temperature, flow rate, catalyst loading, and inlet gas composition in isothermal process are studied. The results show that both the CO conversion and the CH4 selectivity can reach 99% under optimum operating condition. For fixed catalyst loading and inlet gas composition, the result from the variation of flow rate shows that there exists a peak value of the CO conversion and CH4 selectivity. The temperature plays an important effect in the reactor performance. Furthermore, the higher molar H2/CO ratio is, the better CO conversion is. When adding H2O at inlet gas, the CO methanation reaction speed is reduced for the higher molar H2O/CO ratio.
In the tubular methanol reformer integrating with methanol reforming, CO removal, and methanol catalytic combustion, the CuO/ZnO/Al2O3 catalyst in the inner tube is used for methanol steam reforming and the Pt/Al2O3 catalyst in the outer tube is used for methanol catalytic combustion to supply the thermal energy for reforming. The reformed syngas contains about 1~5% CO, the CO methanation with Ni/Al2O3 as catalyst is used to lower the CO concentration. The effects of the operating parameters of methanol-water flow rate, methanol-oxygen flow rate, Ni/Al2O3 filling length and the heat loss from the outside wall on the reactor performance are studied. The numerical results show that under appropriate condition, the methanol conversion rate can over 98% and CO conversion can over 95%. Under the conditions that the methanol-steam flow rate and catalyst fillings are fixed, there exists a methanol-oxygen flow rate range where both the methanol conversion and CO conversion can reach the optimum value. There also exists an optimum catalyst filling length for CO methanation with higher methanol conversion and CO conversion when the methanol-water and methanol-oxygen flow rates are fixed.
第一章 緒論 9
1.1 前言 9
1.2 文獻回顧 11
1.2.1甲醇空氣燃燒之文獻回顧 11
1.2.2甲醇蒸氣重組之文獻回顧 12
1.2.3整合甲醇蒸氣重組及觸媒燃燒之文獻回顧 13
1.2.4整合重組器模擬 15
1.2.5 CO甲烷化反應之文獻 15
1.3 研究目的 18
第二章 CO甲烷化反應器及整合反應器 20
2.1 CO甲烷化反應器 20
2.2整合反應器 20
第三章 數學模式與數值方法 22
3.1 物理說明與基本假設 22
3.2 統御方程式 23
3.2.1 質量守恆方程式 23
3.2.2 動量方程式 23
3.2.3 能量方程式 24
3.2.4 物質方程式 25
3.3化學反應 25
3.3.1 甲醇蒸氣重組反應模式 25
3.2.2 甲醇觸媒燃燒反應模式 27
3.2.3 CO甲烷化反應模式 28
3.4邊界條件 28
3.4.1 CO甲烷化反應器-邊界條件 29
3.4.2 整合反應器-邊界條件 31
3.4數值方法 34
第四章 初步討論與結果 36
4.1 CO甲烷化反應器 43
4.1.1 流量對反應器性能及各成份濃度的效應 43
4.1.2溫度對反應器性能及各成份濃度的效應 48
4.1.3催化劑長度對反應器性能的效應 53
4.1.4入口成份變化對反應器性能及各成份濃度的效應 55
4.2 整合反應器 58
4.2.1甲醇-水流量對反應器性能及各成份濃度的效應 58
4.2.2甲醇-氧氣流量對反應器性能及各成份濃度的效應 66
4.2.3 CO甲烷化觸媒填充長度對反應器性能的效應 73
4.2.4反應器外管有熱損失下,對反應器性能及各成份濃度的效應 74
第五章 結論與未來發展 81
5.1 結論 81
5.1.1 CO甲烷化反應器 81
5.1.2 整合反應器 82
5.2 未來發展 83
參考文獻 84

[1] 能源統計年報 - 綜合類 - 經濟部能源局(Bureau of Energy, Ministry of Economic Affairs, R.O.C.)全球資訊網
[2] 行政院環境保護署 ─ 溫室氣體排放統計
[3] S. Ahmed, M. Krumpelt, 2001, Hydrogen from hydrocarbon fuels for fuel cells, Int. J. Hydrogen Energy, Vol. 26, p. 291-301.
[4] J. Pasel, B. Emonts, R. Peters, D. Stolten, 2001, A structured test reactor for the evaporation of methanol on the basis of a catalytic combustion. Catalysis Today, Vol. 69, p.193–200.
[5] Y. Ma, C. Ricciuti, T. Miller, J. Kadlowec, H. Pearlman, 2008, Enhanced catalytic combustion using sub-micrometer and nano-size platinum particles. Energy & Fuels, Vol. 22, p. 3695-3700
[6] A.M. Karim, J.A. Federici, D.G. Vlachos, 2008, Portable power production from methanol in an integrated thermoeletric/microreactor system. Journal of Power Sources, Vol. 179, p.113–120.
[7] C.H. Leu, S.C. King, C.C. Chen, 2010, Investigation of the packed bed and the micro-channel bed for methanol catalytic combustion over Pt/A12O3 catalysts. Applied Catalysis A: General, Vol. 382, p.43–48.
[8] W.H. Chen, B.J. Lin, 2010, Effect of microwave double absorption on hydrogen generation from methanol steam reforming. International Journal of Hydrogen Energy, Vol.35, pp.1987-1997.
[9] C.Y. Hsueh, H.S. Chu, W.M. Yan, and C.H. Chen, 2010, Transport phenomena and performance of a plate methanol steam micro-reformer with serpentine flow field design. Applied Energy, Vol. 87, pp.3137-3147.
[10] M.T. Lee, R. Greif, C.P. Grigoropoulos, H.G. Park, F.K. Hsu, 2007, Transport in packed-bed and wall-coated steam-methanol reformers, Journal of Power Sources, Vol.166, p.194-20.
[11] S.W. Perng, R.F. Horng, H.W. Ku, 2013, Effects of reaction chamber geometry on the performance and heat/mass transport phenomenon for a cylindrical methanol steam reformer. Applied Energy, Vol.103, pp. 317-327.
[12] T. Terazaki, M. Nomura, K. Takeyama, O. Nakamura, T. Yamamoto, 2005, Development of multi-layered microreactor with methanol reformer for small PEMFC. Journal of Power Sources, Vol.145, p. 691-696.
[13] G.G. Park, S.D. Yim, Y.G. Yoon, C.S. Kim, D.J. Seo, K. Eguchi, 2005, Hydrogen production with integrated microchannel fuel processor using methanol for portable fuel cell systems. Catalysis Today, Vol. 110, p. 108-113.
[14] J. Won, H. Jun, M. Jeon, S. Woo, 2006, Performance of microchannel reactor Combined with combustor for methanol steam reforming. Catalysis Today, Vol.111, p.158–163.
[15] J.M. Sohn, Y.C. Byun, J.Y. Cho, J. Choe, K.H. Song, 2007, Development of the integrated methanol fuel processor using micro-channel patterned devices and its performance for steam reforming of methanol. International Journal of Hydrogen Energy, Vol. 32, p.5103-5108.
[16] A. M. Moreno, B.A. Wilhite, 2010, Autothermal hydrogen generation from methanol in a ceramic microchannel network. Journal of Power Sources, Vol.195, p.1964–1970.
[17]R.Y. Chein, Y.C. Chen, J.Y Chen, J. N. Chung, 2012, Design and test of a miniature hydrogen production reactor integrated with heat supply, fuel vaporization, methanol-steam reforming and carbon monoxide removal unit. International Journal of Hydrogen Energy, Vol. 37, p.6562-6571
[18] R.Y. Chein, Y.C. Chen , C.M. Chang , J.N. Chung, 2013, Experimental study on the performance of hydrogen production from miniature methanol–steam reformer integrated with Swiss-roll type combustor for PEMFC. Applied Energy, Vol.105, p.86–98.
[19] C. Cao, Y. Wang Y, J.D. Holladay, E.O. Jones and D.R. Palo, 2005, Design of micro-scale fuel processors assisted by numerical modeling. AIChE Journal, Vol. 51, p. 982-988.
[20] A. Fazeli, M. Behnam, 2010, Hydrogen production in a zigzag and straight catalytic wall coated micro channel reactor by CFD modeling. Int. J. Hydrogen Energy, Vol. 35, p. 9496-9503.
[21] G. Arzamendi, P.M. Die’guez, M. Montes, M.A. Centeno, J.A. Odriozola and L.M. Gandia, 2009, Integration of methanol steam reforming and combustion in a microchannel reactor for H2 production: A CFD simulation study. Catalysis Today, Vol.143, pp. 25-31
[22] R.Y. Chein, Y.C. Chen, J. N. Chung, 2013, Numerical study of methanol-steam reforming and methanol-air catalytic combustion in annulus reactors for hydrogen production. Applied Energy, Vol. 102, p.1022-1034.
[23] A. Alihosseinzadeh, B. Nematollahi, M. Rezaei, E.N. Lay, 2015, CO methanation over Ni catalysts supported onhigh surface area mesoporous nanocrystalline g-Al2O3 for CO removal in H2-rich stream. Int. J. Hydrogen Energy, Vol. 40, p. 1809-1819.
[24] A. Zhao, W. Ying, H. Zhang, H. Ma, D. Fang, 2012, Ni–Al2O3 catalysts prepared by solution combustion method for syngas methanation. Catalysis Communications, Vol.17, p. 34-38.
[25] J. Gao, C. Jia, J. Li, M. Zhang, F. Gu, G. Xu, Z. Zhong, F. Su, 2013, Ni/Al2O3 catalysts for CO methanation: Effect of Al2O3 supports calcined at different temperatures. Journal of Energy Chemistry, Vol.22, p. 919-927.
[26] D. Hu, J. Gao, Y. Ping, L. Jia, P. Gunawan, Z. Zhong, G. Xu, F. Gu, F.Su, 2012,Enhanced Investigation of CO Methanation over Ni/Al2O3 Catalysts for Synthetic Natural Gas Production., I&EC, Vol. 51, p. 4875-4886.
[27] N. Shimoda, D. Shoji, K. Tani, M. Fujiwara, K.Urasaki, R. Kikuchi, S. Satokawa, 2015, Role of trace chlorine in Ni/TiO2 catalyst for CO selective methanation in reformate gas, Applied Catalysis B: Environmental. Vol.174-175, p. 486-495.
[28] S. Tada, D. Minori, F. Otsuka, R. Kikuchi, K. Osada , K. Akiyama, S. Satokawa, 2014, Effect of Ru and Ni ratio on selective CO methanation over Ru–Ni/TiO2. Fuel, Vol.129, p.219-224.
[29] S. Takenaka, T. Shimizu, K. Otsuka, 2004, Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts. Int. J. Hydrogen Energy, Vol.29, p. 1065-1073.
[30] Y. Li, Q. Zhang, R. Chai, G. Zhao, F. Cao, Y. Liu, Y. Lu, 2016, Metal-foam-structured Ni–Al2O3 catalysts: Wet chemical etching preparation and syngas methanation performance. Applied Catalysis A: General, Vol.510, p. 216-226.
[31] Z. Liu, B. Chu, X. Zhai, Y. Jin, Y. Cheng, 2012, Total methanation of syngas to synthetic natural gas over Ni catalyst in a micro-channel reactor. Fuel, Vol.95, p. 599-605.
[32] S.K. Ryi, S.W. Lee, K.R. Hwang, J.S. Park, 2012, Production of synthetic natural gas by means of a catalytic nickel membrane. Fuel, Vol.94, p. 64-69.
[33] J. Liu, W. Shen, D. Cui, J. Yu, F. Su, G. Xu, 2013, Syngas methanation for substitute natural gas over Ni–Mg/Al2O3 catalyst in fixed and fluidized bed reactors. Catalysis Communications, Vol.38, p. 35-39.
[34] W.R. Kang, K.B. Lee, 2013, Effect of operating parameters on methanation reaction for the production of synthetic natural gas. Korean J. Chem. Eng, Vol.30, p. 1386-1394.
[35] C. Cao, Y. Wang, J.D. Holladay, E.O. Jones, D.R. Palo, 2005, Design of Micro-Scale Fuel Processors Assisted by Numerical Modeling. AIChE journal, Vol.51, p. 982-988.
[36] J. Zhang, N. Fatah, S. Capela, Y. Kara, O. Guerrini, A.Y. Khodakov, 2013, Kinetic investigation of carbon monoxide hydrogenation under realistic conditions of methanation of biomass derived syngas conditions of methanation of biomass derived syngas. Fuel, Vol.111, p. 845-854.
[37] J. Gao, Y. Wang, Y. Ping, D. Hu, G. Xu, F. Gu, F. Su, 2012, A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Advances, Vol.2, p. 2358-2368.
[38] H. Er-Rbib, C. Bouallou, 2014, Modeling and simulation of CO methanation process for renewable electricity storage. Energy, Vol.75, p.81-88.
[39] J. Suh, M. Lee, R. Greif, P. Costas, C.P. Grigoropoulos, 2009, Transport phenomena in a steam-methanol reforming micro-reactor with internal heating. Int. J. Hydrogen Energy, Vol.31, p. 314-322.
[40] M. Phanikumar, R. Mahajan, “Non-Darcy natural convection in high porosity metal Foams,” Int. J. Heat Mass Transfer 2002; 45:3781-93
[41] Francesconi JA, Mussati MC, Aguirre PA, “Analysis of design variables for water–gas-shift reactors by model-based optimization,” J Power Sources 2007;173:467–77.
[42] R. B. Bird, W. E. Stewart, and E. N. Lightfoot, 2002, ansport Phenomena, 2nd ed., New York: John Wiley & Sons.
[43] B. Peppley, K. Amphlett, L. Kearns, R. Mann, 1999, Methanol-steam reforming on Cu/ZnO/Al2O3. Part 1, the reaction network. Appl. Catalyst A, Vol. 179, p. 21-29.
[44] B. Peppley, K. Amphlett, L. Kearns, R. Mann, 1999, Methanol-steam reforming on Cu/ZnO/Al2O3catalysts. Part 2, a comprehensive kinetic model. Appl. Catalyst A, Vol.179, p. 31-49.
[45] J. Suh, M. Lee, R. Greif, C.P. Grigoropoulos, 2007, A study of steam methanol reformer in a micro-reactor. J. Power Sources, Vol.173, p. 458-466.
[46] J. Amphlett, K. Creber, J. Davis, R. Mann, B. Peppley, D. Stokes, 1994, Hydrogen production by steam reforming of methanol for polymer electrolyte fuel cells. Int. J. Hydrogen Energy, Vol.19, p. 131-137.
[47] H. Purnama, T. Ressler, R.E. Jentoft, H. Soerijanto, R. Schlogl, R. Schomacker, 2004, CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst. Appl. Catal. A, Vol.259, p. 83-94.
[48] W.H. Chen, M.R. Lin, T.L. Jiang, M.H. Chen, 2008, Modeling and simulation of hydrogen generation from high temperature and low-temperature water gas shift reactions. Int. J. Hydrogen Energy, Vol.33, p. 6644-6656.
[49] V.K. Vadlamudi, S. Palanki, 2011, Modeling and analysis of miniaturized methanol reformer for fuel cell powered mobile applications. Int. J. Hydrogen Energy, Vol.36, p. 3364-3370.
[50] J. Kopyscinski, 2010, Production of synthetic natural gas in a fluidized bed reactor: understanding the hydrodynamic, mass transfer, and kinetic effects. Sc.D. thesis, Villigen: Suisse: Paul scherrer institute.
[51] H. Er-rbib, C. Bouallou, 2014, Methanation catalytic reactor. C. R. Chimie, Vol. 17, p. 701-706.
[52] J. Kopyscinski, 2010, Applying spatially resolved concentration and temperature measurements in a catalytic plate reactor for the kinetic study of CO methanation. Journal of Catalysis, Vol.271, p.262-279.
[53] C. Borgnakke, R. E. Sonntag, 2009, Fundamentals of Thermodynamics, 7nd ed., Wiley & Sons, Inc.
[54] C. Wu, D. Tian, Y. Cheng, 2010, CFD-DEM simulation of syngas-to-methane process in a fluidized-bed reactor, The 13th International Conference on Fluidization - New Paradigm in Fluidization Engineering.
[55] Nickel on silica-alumina, catalyst, Alfa Aesar^TM. https://www.fishersci.com/us/en/home.html
[56] A. Loukou, I. Frenzel, J. Klein, D. Trimis, 2012, Experimental study of hydrogen production and soot particulate matter emissions from methane rich-combustion in inert porous media, international journal of hydrogen energy, Vol.37, p.16686-16696
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *