|
[1] Kasajima, T., Nishikiori, T., Nohira, T., and Ito, Y., “Electrochemical window and the characteristics of (α + β) Al-Li alloy reference electrode for a LiBr-KBr-CsBr eutectic melt,” Journal of The Electrochemical Society, 151(11), pp. E335. , 2004 [2] Guidotti, R. A., and Masset, P. J., “Thermally activated (‘thermal’) battery technology: Part IV. Anode materials,” Journal of Power Sources, 183(1), pp. 388–398. [3] Hurlbut, Cornelius S., Klein, Cornelis, “Manual of Mineralogy”, 20th ed., John Wiley and Sons, New York, pp 285–286., 1985. [4] Masset, P. J., and Guidotti, R. A., “Thermal activated (‘thermal’) battery technology: Part IIIa: FeS2 cathode material,” Journal of Power Sources, 177(2), pp. 595–609. , 2008. [5] Tomczuk, Z., and Vissers, D. R., “EMF measurements on select transitions of the Li ‐ al / FeS2 system,” Journal of The Electrochemical Society,133(12), pp. 2505–2509. , 1986 [6] Masset, P., and Guidotti, R. A., “Thermal activated (thermal) battery technology: Part II. Molten salt electrolytes,” Journal of Power Sources, 164(1), pp. 397–414. , 2007. [7] Sangster, J., and Pelton, A. D., “Phase diagrams and thermodynamic properties of the 70 binary alkali Halide systems having common ions,” Journal of Physical and Chemical Reference Data, 16(3), p. 509. , 1987. [8] C.F. Chen, Y. C. Cheng, and C.W. Hong, First Principles Molecular Dynamics Computation on Ionic Transport Properties in Molten Salt Materials, CMES, 109(3), pp. 263-283, 2015 [9] 陳信宏(指導教授 吳乃立),“鋰鋁/二硫化鐵電池之熱效應理論分析”,台灣大學化學工程研究所碩士論文,07/2000. [10] C. Caccamo, and M. Dixon, “Molten alkali-halide mixtures: a molecular-dynamics study of Li/KCl mixtures,” J. Phys. C: Solid St. Phys., 13, pp. 1887-1900, 1980. [11] M. Rovere, and M. P. Tosi, “Structure and dynamics of molten salts,” Rep. Prog. Phys., 49, pp. 1001-1081, 1986. [12] M. Berkowitz, and W. Wan, “The limiting ionic conductivity of Na+ and Cl- ions in aqueous solutions: Molecular dynamics simulation,” J. Chem. Phys., 86, pp.376-382, 1987. [13] B. Morgan, and P. A. Maddena, “Ion mobilities and microscopic dynamics in liquid (Li, K) Cl,” J. Chem. Phys., 120, pp. 1402-1412, 2003. [14] X. H. Duan, J. F. Li, W. J. Zhu, “Molecular dynamics simulation of ionic transport on molten Li–KCl interface,” Inter. J. Quan. Chem., 111, pp. 3873-3880, 2011. [15] A. Bengston, H. O. Nam, S. Saha, R. Sakidja, and D. Morgan, “First-principles molecular dynamics modeling of the LiCl-KCl molten salt system,” Comput. Mater. Sci., 83, pp. 362- 370, 2014. [16] Bernadi, D., Powlikoski, E., and Newman, J., “A General Energy Balance for Battery Systems,” J. Electrochem. 132(1), pp. 5-12., 1985. [17] Bernadi, D., Powlikoski, E., and Newman, J., “Mathematical Modeling of LiAl/LiCl-KCl/FeS Cells,” J. Electrochem., 135(12), pp. 2922-2931., 1985. [18] Guidotti, R. A., and Masset, P., “Thermally activated (‘thermal’) battery technolog: Part I: An overviewy,” Journal of Power Sources, 161(2), pp. 1443–1449. , 2006. [19] Masset, P., “Iodide-based electrolytes: A promising alternative for thermal batteries,” Journal of Power Sources, 160(1), pp. 688–697. , 2006. [20] Haimovicha, N., Dekel, D. R., and Brandon, S., “A Simulator for System-Level Analysis of Heat Transfer and Phase-Change in Thermal Batteries, I. Computational Approach and Single-Cell Calculations,” J. Electrochem. Soc, 156(6), pp. A442-A453., 2009. [21] Haimovicha, N., Dekel, D. R., and Brandon, S., “A Simulator for System-Level Analysis of Heat Transfer and Phase-Change in Thermal Batteries II. Multiple-Cell Simulations,” J. Electrochem. Soc, 162(3), pp. A350-362., 2015. [22] Kohn, W., and Sham, L. J., “Self-consistent equations including exchange and correlation effects,” Physical Review, 140(4A), pp. A1133–A1138. , 1965. [23] Perdew, J. P., Burke, K., and Ernzerhof, M., “Generalized gradient approximation made simple,” Physical Review Letters, 77(18), pp. 3865–3868. , 1996. [24] Nosé, S., “A unified formulation of the constant temperature molecular dynamics methods,” The Journal of Chemical Physics, 81(1), p. 511. , 1984. [25] Hoover, W. G., “Canonical dynamics: Equilibrium phase-space distributions,” Physical Review A, 31(3), pp. 1695–1697., 1985. [26] Frenkel, D., Smit, B., and Ratner, M. A., “Understanding molecular simulation: From Algorithms to applications,” Physics Today, 50(7), p. 66. , 1997. [27] Taralov, M., Taralova, V., Popov, P., Iliev, O., Latz, A., and Zausch, J., “Report on finite element simulations of Electrochemical processes in Li-ion batteries with Thermic effects,” Berichte des Fraunhofer ITWM, Nr, 221., 2012. [28] K. S. Chen, G. H. Evans, R.S. Larson, M. E. Coltrin, and J. Neuman, “Multi-dimensional modeling of thermal battery using the Stefan-Maxwell formulation and the finite element method.”, J. Electrochem. Soc., 98(15), pp. 138-149., 1999. [29] 紀尚甫(指導教授 洪哲文),“熱電池電解質-熔融鹽混合物之第一原理分子動力學模擬分析”,清華大學動力機械工程學系碩士論文,07/2014. [30] 李皓宇(指導教授 洪哲文),“熔融電解質熱電池之熱質傳性質與性能分析”, 清華大學動力機械工程學系碩士論文,07/2015. [31] Fujiwara, S., Inaba, M., and Tasaka, A., “New molten salt systems for high temperature molten salt batteries: Ternary and quaternary molten salt systems based on LiF–LiCl, LiF–LiBr, and LiCl–LiBr,” Journal of Power Sources, 196(8), pp. 4012–4018. , 2016. [32] Guidotti, R. A., and Masset, P. J., “PRIMARY BATTERIES – RESERVE SYSTEMS | thermally activated batteries: Lithium,” Encyclopedia of Electrochemical Power Sources, pp. 141–155. , 2009. [33] Pollard, R., and Newman, J., “Mathematical modeling of the Lithium‐Aluminum, iron sulfide battery,” Journal of The Electrochemical Society, 128(3), pp. 491–502. , 1981. [34] Bernardi, D., and Newman, J., “Mathematical modeling of lithium(alloy), iron disulfide cells,” Journal of The Electrochemical Society, 134(6), pp. 1309–1318. , 1987. [35] Zhang, Y. N., Law, M., and Wu, R. Q., “Atomistic modeling of sulfur vacancy diffusion near iron Pyrite surfaces,” The Journal of Physical Chemistry C,119(44), pp. 24859–24864. , 2015 [36] Incropera, Frank P., DeWitt, David P., Bergman, Theodore L., Lavine, Adrienne S., “Principles of Heat and Mass Tranfer”, 7th ed., John Wiley and Sons, New York, pp 602–630., 2011.
|