|
[1] C.S. Peskin. 1972. Flow patterns around heart valves: a numerical method. J.
Comp. Phys.10 : 252-271.
[2] C.S. Peskin. 1982. The fluid dynamics of heart valves: Experimental, theritiacal and computational methods. ANNU. REV. FLUID. MECH.14 : 235-259.
[3] T. Ye, R. Mittal, H.S. Udaykumar, W. Shyy. 1999. An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. J. Comput. Phys. 156 : 209-240.
[4] R.J. LeVeque, Z. Li. 1994. The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 156 : 1019-1044.
[5] R.J. LeVeque, Z. Li. 1997. The immersed interface method for Stokes flow with elastic boundaries or surface tension. Siam J. Dci. Comput. 18: 709-735.
[6] D. Calhoun. 2002. A Cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irresgular regions. J. Comp. Phys. 176 : 231-275.
[7] Z. Li, M.C. Lai. 2001. The ommersed interface method for the Navier-Stokes equations with singular forces. J. Comp. Phys.171 : 822-842.
ii
[8] M.C. Lai, C.S. Peskin. 2000. An immersed boundary method with formal second order accuracy and reduced numerical viscosity. J. Comp. Phy. 160 : 705-719.
[9] Z. Li. 2003. An overview of the immersed interface method and its applications.
Twaiwanese J. Math 7 : 1.
[10] L.E. Silva, A. Silveira-Neto, J.J.R. Damasceno. 2003. Numerical simulation of two-dimensional flow over a circular cylinder using the immersed boundary method. J. Comp. Phys. 189 : 351-370.
[11] D. Glodstein, R. Handler, L. Sirovich. 1993. Modeling a no-slip flow with an external force field. J. Comp. Phys. 105 : 354-366.
[12] D. Glodstein, R. Handler, L. Sirovich. 1995. Direct numerical simulation of turlent flow over a modeled riblet covered surface. J. Fluid Mech. 302 : 333- 376.
[13] E.M. Saiki, S. Biringen. 1996. Numerical simulation of a cylinder in uniform flow : application of a virtual boundary method. J. COmp. Phys. 123 : 450-465.
[14] J. Mohd-Yusof. 1997. Combined immersed boundary/B-Spline method for simulationsof flows in complex geometries in complex geometries. CTR annual research briefs NASA Ames/Stanford University.
[15] R. Verzicco, J. Mohd-Yusof, P.Orlandi, D. Haworth. 2000. LES in complex geometries using boundary body forces. AIAA Journal 38 : 27-433.
[16] E.A. Fadlum, R. Verzicco, P. Orlandi, J. Mohd-Yusof. 2000. Combined immersed boundary methods for three dimensional complex flow simulations. J. Comp. Phys. 161 : 35-60.
[17] E. Balaras. 2004. Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations. Comput. Fluids 33 : 375-404.
[18] Y.H. Tseng, J.H. Ferziger. 2003. A ghost-cell immersed boundary boundary method for flow in complex geometry. J. Comp. Phys. 192 : 593-623.
[19] M. Tyagi, S. Acharya. 2005. Large eddy simulation of turbulent flows in complex and moving rigid geometries using the immersed boundary method. J. Numer. Meth. Fluids 48 : 691-722.
[20] H.S. Udaykumar, R. MIttal, W. Shyy. 1999. Computation of solid-liquid phase fronts in the sharp interface limit on fixed grids. J. Comp. Phys. 153 : 535-574.
[21] H.S. Udaykumar, R. MIttal, P. Rampunggoon, A. Khanna. 2001. A sharp interface Cartesian grid method for simulating flows with complex moving boundaries. J. Comp. Phys. 174 : 345-380.
[22] S. Marella, S. Krishnan, H. Liu, H.S. Udaykumar. 2005. Sharp interface Cartesian grid method I: An easily implemented technique for 3D moving boundary computations. J. Comp. Phys. 210 : 1-31.
[23] P.H. Chang, C.C. Liao , H.W. Hsu , S.H. Liu and C.A. Lin. 2014. Simulations of laminar and turbulent flows over periodic hills with immersed boundary method. Comput. Fluids 92 : 233-243.
[24] S.W. Su, M.C. Lai, C.A. Lin. 2007. A simple immersed boundary technique for simulating amplex flows with rigid boundary. Comput. Fluids 36 : 313-324.
[25] J. Kim, D. Kim, H. Choi. 2001. An immersed boundary finite volume method for simulations of flow in complex geometries. J. Comp. Phys. 171 : 132-150.
[26] D. Kim, H. Choi. 2006. Immersed boundary method for flow around an arbitrarily moving body. J. Comp. Phys. 212 : 662-680.
[27] J. Yang, E. Balaras. 2006. An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. J. Comp. Phys. 215 : 12-24.
[28] C.C. Liao, Y.W. Chang, C.A. Lin and J.M. McDonough. 2010. Simulating flows with moving rigid boundary using immersed-boundary method. Comput. Fluids 39 : 152-167.
[29] R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph. 2001. J. Periaux, A fictious domain approach to the direct numerical simulation of imcompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comp. Phys. 169 : 363-426.
[30] J. Yang, F. Stern. 2014. A sharp interface direct forcing immersed boundary approach for fully resolved simulations of particulate flows. J. Fluids Eng. 136 : 040904-1.
[31] S. Balay and K. Buschelman and W. D. Gropp and D. Kaushik and
M. G. Knepley and L. C. Mclnnes. 2010. PETSc Web page < http :
//www.mcs.anl.gov/petsc >.
[32] H.W. Hsu, F.N. Hwang, Z.H. Wei, S.H. Lai, C.A. Lin. 2011. A parallel multilevel preconditioned iterative pressure Poisson solver for the large-eddy simulation of turbulent flow inside a duct. Comput. Fluids 45 : 138-146.
[33] M.N Chang. 2013. A parallel multilevel presondidioned iterative pressure Poisson solver for 3D lid-driven cavity. Master thesis, Department of Mechanical Engineering, National Tsing Hua University.
[34] A.F Fortes,D.D. Joseph, T.S Lundgren. 1987. Nolinear mechanics of fluidization of beds of spherical particle. J. Fluid Mech 177 : 407-483.
[35] D.D. Joseph, J. Nelson, H.H. Hu, Y.J. Liu. 1987. Competition btween inertial pressures and normal stresses in the flow induced anisotropy of solid particles. J. Fluid Mech 177 : 407-483.
[36] Feng J, Hu HH, Joseph DD. 1994. Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 1. Sedimentation. J. Fluid Mech 261 : 95-134.
[37] Glowinski R, Pan TW, Hesla TI. 1999. Joseph DD,A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiph. Flow 25 : 755-794.
[38] Uhlmann M. 2005. An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209 : 448-476.
[39] Wan D. Turek S. 2006. Direct numerical simulation of particulate flow via multigrid FEM techniques and the fictitious boundarymethod. Int. J. Numer. Methods Fluids 51 : 531-566.
[40] Wang L, Guo ZL, Mi JC. 2014. Drafting, kissing and tumbling process of two particles with different sizes. Comput. Fluids 96 : 20-34.
[41] Chuan-Chieh Liao, Wen-Wei Hsiao, Ting-Yu Lin, Chao-An Lin. 2015.
Simulations of two sedimenting-interacting spheres with different sizes and initial configurations using immersed boundary method. Comput. Mech. 55 : 1191-1200.
[42] Johnson A, Tezduyar TE. 1996. Simulation of multiple spheres falling in a liquid-filled tube, Comput. Methods Appl. Mech. Engng. 134 : 351-373.
[43] Johnson A, Tezduyar TE. 1997. 3D simulation of fluid-particle interactions with the number of particles reaching 100. Comput. Methods Appl. Mech. Engng. 145 : 301-321.
[44] Johnson A, Tezduyar TE. 1999. Advanced mesh generation and update methods for 3D flow simulations. Computational Mech. 23 : 130-143.
[45] Sharma N, Patankar NA. 2005 A fast computation technique for the direct numerical simulation of rigid particulate flows. J. Comput. Phys. 205 : 439- 457.
[46] Apte SV, Martin M, Patankar NA. 2009. A numerical method for fully resolved simulation (FRS) of rigid particleflow interactions in complex flows. J. Comput. Phys. 228 : 2712-2738.
[47] Breugem WP. 2012. A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows. J. Comput. Phys. 231 : 4469- 4498.
[48] Charles Hull. 1988. StereoLithography Interface Specification. 3D Systems. Inc.
July 1988
[49] Nastase-Dan Ciobota. 2012. Standard Tessellation Language in Rapid Prototyping Technology. The Scientific Bulletin of VALA HIA University MATERIALS and MECHANICS Nr. 7 (year 10) : 201.
[50] G. Tryggvason , B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J.
Han, S. Nas, Y.-J. Jan. 20001. A Front-Tracking Method for the Computations of Multiphase Flow. J. Comp. Phys. 169 : 708-759.
[51] A. Gilmanov, F. Sotiropoulos, E. Balaras. 2003. A general reconstruction algorithm for simulating flows with 3D complex immerd boundaries on Cartesian grids. J. Comp. Phys. 191 : 660-669.
[52] Anvar Gilmanov, Fotis Sotiropoulos. 2005. A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. J. Comp. Phys. 207 : 457-492.
[53] I. Borazjani, L. Ge, and F. Sotiropoulos. 2008. Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction with Complex 3D Rigid Bodies. J Comput Phys. 227 : 75877620.
[54] R. Mittal, H. Dong, M. Bozkurttas, F.M. Najjar, A. Vargas, A. von loebbeck.
2008. A versatile sharp interface immerd boundary method for incompressible flows with complex boundarys. J. Comp. Phys. 227 : 4825-4852.
[55] Borazjani. 2013. Fluidstructure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves. Comput.Methods in Appl.Mech.Eng. 257 : 103116.
[56] Gianluca Iaccarino, Roberto Verzicco. 2003. Immersed boundary technique for turbulent flow simulations. Appl. Mech. Rev. 56 : 331-347.
[57] Jianming Yang, Frederick Stern. 2013. Robust and Efficient Setup Procedure for Complex Triangulations in Immersed Boundary Simulations. J. Fluids Eng. 135 : Issue 10
[58] Jung-Il Choi, Roshan C. Oberoi, Jack R. Edwards, Jacky A. Rosati. 2007.
An immersed boundary method for complex incompressible flows. J. Comput. Phys. 224 : 757-784.
[59] H. Choi, P. Moin. 1994. Effects of the computational time step on numerical solutions of turbulent flow. J. Comput. Phys. 113 : 1-4.
[60] J. Kim, P. Moin. 1985. Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys. 59 : 308-323.
[61] E. Haines. 1994. Point in polygon strategies. Academic Press Graphics Gems
Series : 24-46.
[62] Iman Borazjani, Liang Ge, and Fotis Sotiropoulos. 2008. Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction with Complex 3D Rigid Bodies. J. Comput Phys. 227 : 75877620.
[63] D.V. Le, B.C. Khoo, K.M. Lim. 2008. An implicit-forcing immersed boundary method for simulating viscous flows in irregular domain. Comp. Methods Appl. Engrg. 197 : 2118-2130.
[64] A. ten Cate, C.H. Nieuwstad, J.J. Derksen, H.E. A Van den Akker. 2002.
Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity. Phys. Fluids 14 : 4012-4025.
[65] T. A. Johnson, V. C. Patel. 1999. Flow past a sphere up to a Reynolds number of 300. Fluid. Mech 378 : 19-70.
[66] P. K. Mohanta, C. A. Lin, R. S. PATIL. 2016. Three dimensional simulations of Wind Turbine flows with Immersed Boundary Method. Undergraduate Thesis,BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE PILANI, GOA CAMPUS
[67] Z.G. Feng, E.E. Michaelides. 2005. Proteus: a direct forcing method in the simulations of particulate flows. J. Comput. Phys. 202 : 251.
[68] J. Jonkman, S. Butterfield, W. Musial, and G. Scott. 2009. Definition of a
5-MW Reference Wind Turbine for Offshore System Development. Technical
Report NREL/TP-500-38060 February 2009
|