帳號:guest(18.220.63.83)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅康
作者(外文):Luo Kang
論文名稱(中文):An integrated array-based emulsion droplet microfluidic device for digital loop-mediated isothermal amplification (LAMP) analysis
論文名稱(外文):用於數位化恆溫式環形核酸增幅法分析基於 乳化液滴陣列之整合型微流體裝置
指導教授(中文):李國賓
指導教授(外文):Lee, Gwo Bin
口試委員(中文):沈延盛
楊瑞珍
口試委員(外文):Shan, Yan Shen
Yang, Ruey Jen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:103033469
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:70
中文關鍵詞:乳化液滴數位化核酸檢測恆溫式環形核酸增幅法微流體系統
外文關鍵詞:Emulsion dropletdigital nucleic acid detectionLAMPmicrofluidics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:615
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
基於核酸的檢測是一項十分流行應用於DNA、RNA 等核酸分子偵測的技術。這項技術可以用於癌症的早期診斷,遺傳性疾病的確認。通常檢測樣本中核酸的數量太低以至於難以偵測到,因此,核酸檢測的第一步通常是將核酸增幅放大到可以偵測的水準。聚合酶連鎖反應(PCR)是一個最常使用於核酸增幅的方法。在PCR過程中,反應樣本會在兩到三個不同的操作溫度之間循環。反應過程中的熱循環要求精確穩定的控制。為了簡化相對複雜的熱循環過程,一些恆溫式的核酸增幅方法得到了發展。恆溫式的核酸增幅方法例如恆溫式環形核酸增幅法(LAMP)可以在固定的溫度下進行,因此也不需要進行熱循環的過程,這極大的減少了溫度控制模組的複雜性以及能量的消耗,使得該方法更適於基於微流體技術的應用。和PCR相比,LAMP有更好的靈敏性和專一性,反應時間也更短,以在一個小時內完成反應。LAMP的這些優點使得它成為了一個具有前景的基於核酸的檢測技術。在生物醫學應用中,確定原始樣本中核酸的量是十分重要的。樣本中核酸的原始濃度可以使用即時PCR的方式得到。但是這個定量的過程需要一個參照物或者是標準曲線。而且,在這種大體積的反應時無法區分目標物濃度上細微的差異。為了克服這些缺點,發展出了數位化的核酸增幅方法。在本研究中,我們提出了一個用於進行數位化LAMP分析的新方法,通過整合基於微流體的液滴乳化技術和基於流體力學的捕獲技術來形成一個大小均勻的液滴陣列,並將該陣列用於數位化的LAMP實驗。該方法是將LAMP 反應溶液通過微流體乳化液滴技術形成單分散的乳化液滴,每顆液滴都可以充當一個反應容器。基於流體力學的捕獲技術則被用於固定這些液滴從而形成一個液滴陣列。我們設計的整合型微流體晶片可以產生大小均勻的液滴,大小差異是小於3%,同時這些液滴可以在流體力學的作用下被依序固定在設計好的陷阱微結構中。除此之外,我們的LAMP反應也是可以成功的在油包水的乳化液滴中完成。
Nucleic acid technology (NAT) based detection is a popular technique to detect nucleic acid molecules such as deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), which can be used for early diagnosis of cancer, confirmation of genetic disease, and many others. Usually, the copy number of the nucleic acid molecules in a sample is too less to be detected. As a result, the first step of nucleic acid detection is to amplify the nucleic acid molecules to a detectable level. Polymerase chain reaction (PCR) is one of the most commonly used methods for DNA or RNA amplification, in which nucleic acid samples go through thermal cycling between two or three different operating temperatures. The thermal cycling requires accurate and robust control of the operating temperature. To simplify the complicated processes of thermal cycling, isothermal amplification methods have been developed. Isothermal amplification reactions such as loop-mediated amplification (LAMP) can be implemented at a fixed temperature with no need for thermal cycling, which reduces the complexity of the temperature control module and consumes less energy, making them more suitable for microfluidics-based applications. Moreover, when compared with PCR, LAMP is more sensitive and specific. Furthermore, it takes less than one hour to finish the amplification process. These advantages make LAMP become a promising method for NAT based detection. In biomedical applications, it is often of great significance to quantify the accurate nucleic acid molecule copies in original samples. The original DNA copies can be measured by real-time PCR. However, the quantification relays on a reference or a standard curve. Besides, this bulk reaction fails to distinguish subtle difference of the target copy number. In an effort to overcome the disadvantages, digital DNA amplification has been developed. In this study, we reported a new method to implement array-based digital LAMP analysis, in which we integrated the emulsion droplet microfluidic device and hydrodynamic trapping techniques to form a droplet array which could be further applied digital LAMP assay. By generating monodisperse water-in-oil droplets which contain LAMP reaction mixture, the bulk LAMP reaction mixture could be partitioned into many separate compartments. Each droplet could function as a reaction chamber. Hydrodynamic trapping technique was further used for immobilizing the droplets to form a droplet array, which is good for later analysis of the result. In this work, we used our integrated microfluidic chip to demonstrate digital LAMP assay. The microfluidic chip could be able to generate uniform droplet with a size variation less than 3% and the droplet could be hydrodynamically immobilized to form a droplet array. Besides, the LAMP assay could be successfully implemented in water-in-oil droplet.
Table of Contents
Abstract……. I
摘要………… III
List of Figures VII
List of Tables XIII
Abbreviations and Nomenclature XIV
Chapter 1 Introduction 1
1.1 MEMS and Microfluidic Technology 1
1.2 Nucleic Acid Detection 2
1.3 Formation of Emulsion Droplet Using Microfluidic Devices 4
1.4 Hydrodynamic Trapping of Micro-particle Using Microfluidic Devices 6
1.5 Motivation and Objectives 8
Chapter 2 Theory 19
2.1 Quantification Method of Digital Nucleic Acid Detection 19
2.2 Emulsion Droplet Formation and Trapping 20
2.2.1 Definition and Characteristics 20
2.2.2 Emulsifying Agents 21
2.2.3 Concept of Hydrophilic and Lipophilic Balance (HLB) 22
2.2.4 Hydrodynamic Trapping 23
Chapter 3 Materials and Methods 29
3.1 Design of the Emulsion Droplet Formation and Trapping Chip 29
3.2 Fabrication of the Emulsion Droplet and Formation Trapping Chip 29
3.2.1 Lithography Process 29
3.2.2 PDMS Casting and Chip Assembly 31
3.3 Sample Preparation 32
3.4 Experimental Procedure 34
3.5 Experimental Setup 34
3.6 Numerical Simulation 35
Chapter 4 Results and Discussion 47
4.1 Droplet Formation and Trapping Using Integrated Microfluidic Chip 47
4.1.1 Numerical Simulation of the Trapping Process 47
4.1.2 The Process of Droplet Formation 47
4.1.3 Size Distribution of Emulsion Droplets 48
4.1.4 Hydrodynamic Trapping of Droplets 48
4.2 Droplet Array-based LAMP Reaction 49
4.2.1 Optimization of the Fluorescence Dye 49
4.2.2 Result of LAMP reaction 50
Chapter 5 Conclusions and Future Perspectives 61
5.1 Conclusions 61
5.2 Future Perspectives 62
REFERENCES 64


[1] S. Haeberle, and R. Zengerle, “Microfluidic platforms for lab-on-a-chip applications,” Lab on a Chip, vol. 7, no. 9, pp. 1094-1110, 2007.
[2] E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature, vol. 507, no. 7491, pp. 181-189, 2014.
[3] D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chemical Society Reviews, vol. 39, no. 3, pp. 1153-1182, 2010.
[4] F. Barany, “Genetic disease detection and DNA amplification using cloned thermostable ligase,” Proceedings of the National Academy of Sciences, vol. 88, no. 1, pp. 189-193, 1991.
[5] M. Grompe, “The rapid detection of unknown mutations in nucleic acids,” Nature genetics, vol. 5, no. 2, pp. 111-117, 1993.
[6] D. Sidransky, “Nucleic acid-based methods for the detection of cancer,” Science, vol. 278, no. 5340, pp. 1054-1058, 1997.
[7] Y. K. Tong, and Y. D. Lo, “Diagnostic developments involving cell-free (circulating) nucleic acids,” Clinica Chimica Acta, vol. 363, no. 1, pp. 187-196, 2006.
[8] K. B. Mullis, and F. A. Faloona, “[21] Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction,” Methods in enzymology, vol. 155, pp. 335-350, 1987.
[9] T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, and T. Hase, “Loop-mediated isothermal amplification of DNA,” Nucleic acids research, vol. 28, no. 12, pp. e63-e63, 2000.
[10] Y. Mori, and T. Notomi, “Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases,” Journal of infection and chemotherapy, vol. 15, no. 2, pp. 62-69, 2009.
[11] K. Nagamine, T. Hase, and T. Notomi, “Accelerated reaction by loop-mediated isothermal amplification using loop primers,” Molecular and cellular probes, vol. 16, no. 3, pp. 223-229, 2002.
[12] J. J. Weusten, W. M. Carpay, T. A. Oosterlaken, M. C. van Zuijlen, and P. A. van de Wiel, “Principles of quantitation of viral loads using nucleic acid sequence-based amplification in combination with homogeneous detection using molecular beacons,” Nucleic acids research, vol. 30, no. 6, pp. e26-e26, 2002.
[13] C. A. Heid, J. Stevens, K. J. Livak, and P. M. Williams, “Real time quantitative PCR,” Genome research, vol. 6, no. 10, pp. 986-994, 1996.
[14] P. Sykes, S. Neoh, M. Brisco, E. Hughes, J. Condon, and A. Morley, “Quantitation of targets for PCR by use of limiting dilution,” Biotechniques, vol. 13, no. 3, pp. 444-449, 1992.
[15] B. Vogelstein, and K. W. Kinzler, “Digital Pcr,” Proceedings of the National Academy of Sciences, vol. 96, no. 16, pp. 9236-9241, 1999.
[16] R. Sanders, J. F. Huggett, C. A. Bushell, S. Cowen, D. J. Scott, and C. A. Foy, “Evaluation of digital PCR for absolute DNA quantification,” Analytical chemistry, vol. 83, no. 17, pp. 6474-6484, 2011.
[17] B. J. Hindson, K. D. Ness, D. A. Masquelier, P. Belgrader, N. J. Heredia, A. J. Makarewicz, I. J. Bright, M. Y. Lucero, A. L. Hiddessen, and T. C. Legler, “High-throughput droplet digital PCR system for absolute quantitation of DNA copy number,” Analytical chemistry, vol. 83, no. 22, pp. 8604-8610, 2011.
[18] M. Li, W. D. Chen, N. Papadopoulos, S. N. Goodman, N. C. Bjerregaard, S. Laurberg, B. Levin, H. Juhl, N. Arber, and H. Moinova, “Sensitive digital quantification of DNA methylation in clinical samples,” Nature biotechnology, vol. 27, no. 9, pp. 858-863, 2009.
[19] T. Hamouda, M. M. Hayes, Z. Cao, R. Tonda, K. Johnson, D. C. Wright, J. Brisker, and J. R. Baker, “A novel surfactant nanoemulsion with broad-spectrum sporicidal activity against Bacillus species,” Journal of Infectious Diseases, vol. 180, no. 6, pp. 1939-1949, 1999.
[20] C. Wibowo, and K. M. Ng, “Product‐oriented process synthesis and development: Creams and pastes,” AIChE journal, vol. 47, no. 12, pp. 2746-2767, 2001.
[21] S. Sugiura, M. Nakajima, and M. Seki, “Effect of channel structure on microchannel emulsification,” Langmuir, vol. 18, no. 15, pp. 5708-5712, 2002.
[22] I. Kobayashi, T. Takano, R. Maeda, Y. Wada, K. Uemura, and M. Nakajima, “Straight-through microchannel devices for generating monodisperse emulsion droplets several microns in size,” Microfluidics and nanofluidics, vol. 4, no. 3, pp. 167-177, 2008.
[23] T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic pattern formation in a vesicle-generating microfluidic device,” Physical Review Letters, vol. 86, no. 18, pp. 4163-4166, Apr 30, 2001.
[24] T. Nisisako, T. Torii, and T. Higuchi, “Droplet formation in a microchannel network,” Lab on a Chip, vol. 2, no. 1, pp. 24-26, 2002.
[25] J. Xu, S. Li, J. Tan, Y. Wang, and G. Luo, “Preparation of highly monodisperse droplet in a T‐junction microfluidic device,” AIChE journal, vol. 52, no. 9, pp. 3005-3010, 2006.
[26] S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using "flow focusing" in microchannels,” Applied Physics Letters, vol. 82, no. 3, pp. 364-366, Jan 20, 2003.
[27] Q. Xu, and M. Nakajima, “The generation of highly monodisperse droplets through the breakup of hydrodynamically focused microthread in a microfluidic device,” Applied Physics Letters, vol. 85, no. 17, pp. 3726-3728, 2004.
[28] S. Takeuchi, P. Garstecki, D. B. Weibel, and G. M. Whitesides, “An axisymmetric Flow‐Focusing microfluidic device,” Advanced materials, vol. 17, no. 8, pp. 1067-1072, 2005.
[29] M. Yang, C. W. Li, and J. Yang, “Cell docking and on-chip monitoring of cellular reactions with a controlled concentration gradient on a microfluidic device,” Analytical chemistry, vol. 74, no. 16, pp. 3991-4001, 2002.
[30] S. Zheng, H. Lin, J.-Q. Liu, M. Balic, R. Datar, R. J. Cote, and Y.-C. Tai, “Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells,” Journal of chromatography A, vol. 1162, no. 2, pp. 154-161, 2007.
[31] W. H. Tan, and S. Takeuchi, “A trap-and-release integrated microfluidic system for dynamic microarray applications,” Proceedings of the National Academy of Sciences, vol. 104, no. 4, pp. 1146-1151, 2007.
[32] D. Di Carlo, N. Aghdam, and L. P. Lee, “Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays,” Analytical chemistry, vol. 78, no. 14, pp. 4925-4930, 2006.
[33] E. A. Ottesen, J. W. Hong, S. R. Quake, and J. R. Leadbetter, “Microfluidic digital PCR enables multigene analysis of individual environmental bacteria,” science, vol. 314, no. 5804, pp. 1464-1467, 2006.
[34] A. Gansen, A. M. Herrick, I. K. Dimov, L. P. Lee, and D. T. Chiu, “Digital LAMP in a sample self-digitization (SD) chip,” Lab on a Chip, vol. 12, no. 12, pp. 2247-2254, 2012.
[35] B. Sun, F. Shen, S. E. McCalla, J. E. Kreutz, M. A. Karymov, and R. F. Ismagilov, “Mechanistic evaluation of the pros and cons of digital RT-LAMP for HIV-1 viral load quantification on a microfluidic device and improved efficiency via a two-step digital protocol,” Analytical chemistry, vol. 85, no. 3, pp. 1540-1546, 2013.
[36] D. A. Selck, M. A. Karymov, B. Sun, and R. F. Ismagilov, “Increased robustness of single-molecule counting with microfluidics, digital isothermal amplification, and a mobile phone versus real-time kinetic measurements,” Analytical chemistry, vol. 85, no. 22, pp. 11129-11136, 2013.
[37] T. D. Rane, L. Chen, H. C. Zec, and T.-H. Wang, “Microfluidic continuous flow digital loop-mediated isothermal amplification (LAMP),” Lab on a Chip, vol. 15, no. 3, pp. 776-782, 2015.
[38] S. Dube, J. Qin, and R. Ramakrishnan, “Mathematical analysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device,” PloS one, vol. 3, no. 8, pp. e2876, 2008.
[39] B. K. Jacobs, E. Goetghebeur, and L. Clement, “Impact of variance components on reliability of absolute quantification using digital PCR,” BMC bioinformatics, vol. 15, no. 1, pp. 283, 2014.
[40] J. Davies, "A quantitative kinetic theory of emulsion type, I. Physical chemistry of the emulsifying agent," Gas/Liquid and Liquid/Liquid Interface. Proceedings of the International Congress of Surface Activity, Vol. 1, pp. 426-438, 1957.
[41] A. Y. Khan, S. Talegaonkar, Z. Iqbal, F. J. Ahmed, and R. K. Khar, “Multiple emulsions: an overview,” Current drug delivery, vol. 3, no. 4, pp. 429-443, 2006.
[42] N. Tomita, Y. Mori, H. Kanda, and T. Notomi, “Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products,” Nature protocols, vol. 3, no. 5, pp. 877-882, 2008.
[43] Data sheet for NANOTM SU-8 negative tone photoresist, formulations 3000 series, released by MICRO-CHEM. Corp.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *