|
[1] S. Haeberle, and R. Zengerle, “Microfluidic platforms for lab-on-a-chip applications,” Lab on a Chip, vol. 7, no. 9, pp. 1094-1110, 2007. [2] E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of microfluidics in biomedical research,” Nature, vol. 507, no. 7491, pp. 181-189, 2014. [3] D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chemical Society Reviews, vol. 39, no. 3, pp. 1153-1182, 2010. [4] F. Barany, “Genetic disease detection and DNA amplification using cloned thermostable ligase,” Proceedings of the National Academy of Sciences, vol. 88, no. 1, pp. 189-193, 1991. [5] M. Grompe, “The rapid detection of unknown mutations in nucleic acids,” Nature genetics, vol. 5, no. 2, pp. 111-117, 1993. [6] D. Sidransky, “Nucleic acid-based methods for the detection of cancer,” Science, vol. 278, no. 5340, pp. 1054-1058, 1997. [7] Y. K. Tong, and Y. D. Lo, “Diagnostic developments involving cell-free (circulating) nucleic acids,” Clinica Chimica Acta, vol. 363, no. 1, pp. 187-196, 2006. [8] K. B. Mullis, and F. A. Faloona, “[21] Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction,” Methods in enzymology, vol. 155, pp. 335-350, 1987. [9] T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, and T. Hase, “Loop-mediated isothermal amplification of DNA,” Nucleic acids research, vol. 28, no. 12, pp. e63-e63, 2000. [10] Y. Mori, and T. Notomi, “Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases,” Journal of infection and chemotherapy, vol. 15, no. 2, pp. 62-69, 2009. [11] K. Nagamine, T. Hase, and T. Notomi, “Accelerated reaction by loop-mediated isothermal amplification using loop primers,” Molecular and cellular probes, vol. 16, no. 3, pp. 223-229, 2002. [12] J. J. Weusten, W. M. Carpay, T. A. Oosterlaken, M. C. van Zuijlen, and P. A. van de Wiel, “Principles of quantitation of viral loads using nucleic acid sequence-based amplification in combination with homogeneous detection using molecular beacons,” Nucleic acids research, vol. 30, no. 6, pp. e26-e26, 2002. [13] C. A. Heid, J. Stevens, K. J. Livak, and P. M. Williams, “Real time quantitative PCR,” Genome research, vol. 6, no. 10, pp. 986-994, 1996. [14] P. Sykes, S. Neoh, M. Brisco, E. Hughes, J. Condon, and A. Morley, “Quantitation of targets for PCR by use of limiting dilution,” Biotechniques, vol. 13, no. 3, pp. 444-449, 1992. [15] B. Vogelstein, and K. W. Kinzler, “Digital Pcr,” Proceedings of the National Academy of Sciences, vol. 96, no. 16, pp. 9236-9241, 1999. [16] R. Sanders, J. F. Huggett, C. A. Bushell, S. Cowen, D. J. Scott, and C. A. Foy, “Evaluation of digital PCR for absolute DNA quantification,” Analytical chemistry, vol. 83, no. 17, pp. 6474-6484, 2011. [17] B. J. Hindson, K. D. Ness, D. A. Masquelier, P. Belgrader, N. J. Heredia, A. J. Makarewicz, I. J. Bright, M. Y. Lucero, A. L. Hiddessen, and T. C. Legler, “High-throughput droplet digital PCR system for absolute quantitation of DNA copy number,” Analytical chemistry, vol. 83, no. 22, pp. 8604-8610, 2011. [18] M. Li, W. D. Chen, N. Papadopoulos, S. N. Goodman, N. C. Bjerregaard, S. Laurberg, B. Levin, H. Juhl, N. Arber, and H. Moinova, “Sensitive digital quantification of DNA methylation in clinical samples,” Nature biotechnology, vol. 27, no. 9, pp. 858-863, 2009. [19] T. Hamouda, M. M. Hayes, Z. Cao, R. Tonda, K. Johnson, D. C. Wright, J. Brisker, and J. R. Baker, “A novel surfactant nanoemulsion with broad-spectrum sporicidal activity against Bacillus species,” Journal of Infectious Diseases, vol. 180, no. 6, pp. 1939-1949, 1999. [20] C. Wibowo, and K. M. Ng, “Product‐oriented process synthesis and development: Creams and pastes,” AIChE journal, vol. 47, no. 12, pp. 2746-2767, 2001. [21] S. Sugiura, M. Nakajima, and M. Seki, “Effect of channel structure on microchannel emulsification,” Langmuir, vol. 18, no. 15, pp. 5708-5712, 2002. [22] I. Kobayashi, T. Takano, R. Maeda, Y. Wada, K. Uemura, and M. Nakajima, “Straight-through microchannel devices for generating monodisperse emulsion droplets several microns in size,” Microfluidics and nanofluidics, vol. 4, no. 3, pp. 167-177, 2008. [23] T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic pattern formation in a vesicle-generating microfluidic device,” Physical Review Letters, vol. 86, no. 18, pp. 4163-4166, Apr 30, 2001. [24] T. Nisisako, T. Torii, and T. Higuchi, “Droplet formation in a microchannel network,” Lab on a Chip, vol. 2, no. 1, pp. 24-26, 2002. [25] J. Xu, S. Li, J. Tan, Y. Wang, and G. Luo, “Preparation of highly monodisperse droplet in a T‐junction microfluidic device,” AIChE journal, vol. 52, no. 9, pp. 3005-3010, 2006. [26] S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using "flow focusing" in microchannels,” Applied Physics Letters, vol. 82, no. 3, pp. 364-366, Jan 20, 2003. [27] Q. Xu, and M. Nakajima, “The generation of highly monodisperse droplets through the breakup of hydrodynamically focused microthread in a microfluidic device,” Applied Physics Letters, vol. 85, no. 17, pp. 3726-3728, 2004. [28] S. Takeuchi, P. Garstecki, D. B. Weibel, and G. M. Whitesides, “An axisymmetric Flow‐Focusing microfluidic device,” Advanced materials, vol. 17, no. 8, pp. 1067-1072, 2005. [29] M. Yang, C. W. Li, and J. Yang, “Cell docking and on-chip monitoring of cellular reactions with a controlled concentration gradient on a microfluidic device,” Analytical chemistry, vol. 74, no. 16, pp. 3991-4001, 2002. [30] S. Zheng, H. Lin, J.-Q. Liu, M. Balic, R. Datar, R. J. Cote, and Y.-C. Tai, “Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells,” Journal of chromatography A, vol. 1162, no. 2, pp. 154-161, 2007. [31] W. H. Tan, and S. Takeuchi, “A trap-and-release integrated microfluidic system for dynamic microarray applications,” Proceedings of the National Academy of Sciences, vol. 104, no. 4, pp. 1146-1151, 2007. [32] D. Di Carlo, N. Aghdam, and L. P. Lee, “Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays,” Analytical chemistry, vol. 78, no. 14, pp. 4925-4930, 2006. [33] E. A. Ottesen, J. W. Hong, S. R. Quake, and J. R. Leadbetter, “Microfluidic digital PCR enables multigene analysis of individual environmental bacteria,” science, vol. 314, no. 5804, pp. 1464-1467, 2006. [34] A. Gansen, A. M. Herrick, I. K. Dimov, L. P. Lee, and D. T. Chiu, “Digital LAMP in a sample self-digitization (SD) chip,” Lab on a Chip, vol. 12, no. 12, pp. 2247-2254, 2012. [35] B. Sun, F. Shen, S. E. McCalla, J. E. Kreutz, M. A. Karymov, and R. F. Ismagilov, “Mechanistic evaluation of the pros and cons of digital RT-LAMP for HIV-1 viral load quantification on a microfluidic device and improved efficiency via a two-step digital protocol,” Analytical chemistry, vol. 85, no. 3, pp. 1540-1546, 2013. [36] D. A. Selck, M. A. Karymov, B. Sun, and R. F. Ismagilov, “Increased robustness of single-molecule counting with microfluidics, digital isothermal amplification, and a mobile phone versus real-time kinetic measurements,” Analytical chemistry, vol. 85, no. 22, pp. 11129-11136, 2013. [37] T. D. Rane, L. Chen, H. C. Zec, and T.-H. Wang, “Microfluidic continuous flow digital loop-mediated isothermal amplification (LAMP),” Lab on a Chip, vol. 15, no. 3, pp. 776-782, 2015. [38] S. Dube, J. Qin, and R. Ramakrishnan, “Mathematical analysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device,” PloS one, vol. 3, no. 8, pp. e2876, 2008. [39] B. K. Jacobs, E. Goetghebeur, and L. Clement, “Impact of variance components on reliability of absolute quantification using digital PCR,” BMC bioinformatics, vol. 15, no. 1, pp. 283, 2014. [40] J. Davies, "A quantitative kinetic theory of emulsion type, I. Physical chemistry of the emulsifying agent," Gas/Liquid and Liquid/Liquid Interface. Proceedings of the International Congress of Surface Activity, Vol. 1, pp. 426-438, 1957. [41] A. Y. Khan, S. Talegaonkar, Z. Iqbal, F. J. Ahmed, and R. K. Khar, “Multiple emulsions: an overview,” Current drug delivery, vol. 3, no. 4, pp. 429-443, 2006. [42] N. Tomita, Y. Mori, H. Kanda, and T. Notomi, “Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products,” Nature protocols, vol. 3, no. 5, pp. 877-882, 2008. [43] Data sheet for NANOTM SU-8 negative tone photoresist, formulations 3000 series, released by MICRO-CHEM. Corp.
|