帳號:guest(18.118.166.47)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張雅展
作者(外文):Zhang, Yazhan
論文名稱(中文):倒單擺車零力矩控制及抗打滑控制器實作
論文名稱(外文):Implementation of Zero Torque Control and Anti-Slip Control on Self-balanced Vehicle
指導教授(中文):葉廷仁
指導教授(外文):Yeh, Ting-Jen
口試委員(中文):陳榮順
顏炳郎
口試委員(外文):Chen,Rong-Shun
Yen,Ping-Lang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:103033468
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:41
中文關鍵詞:倒單擺車訊號融合重心估測防滑控制無線訊號採集訊號處理
外文關鍵詞:WIPSensor FusionCOG EsitimationAnti-slip ControlWireless SensorSensor Signal Processing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:538
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
摘要
安全對於倒單擺車是一個重要的議題。 在本論文中,為了提高倒單擺車在重心未知的情況下的穩定性,新型的平衡控制算法零力矩控制法被深入研究。模擬以及實驗結果證實零力矩控制法能夠有效估測倒單擺車的重心變化並且能夠抵抗外界的干擾。 此外,為了研究實施於倒單擺車上的防打滑控制, 安裝于輪上的無線滑差加速度量測系統被設計出來,其量測的準確度以及即時性也得到實際數據的佐證。基於滑差加速度可量測前提下進行的模擬實驗展示了在輪胎打滑情況下利用本文設計的防打滑控制器系統能夠達到穩定的效果。
Abstract
Safety is significant issue in wheeled inverted pendulum(WIP) vehicles. In this thesis, in order to enhance the stability under uncertain center of gravity, a novel control algorithm called Zero Torque Control(ZTC) is investigated. Simulation and experimental results verify that ZTC can estimate the changing center of gravity of WIP vehicle and reject external disturbances. In addition, in order to study on the anti-slip control on WIP vehicles, an on-wheel wireless slip acceleration detection unit is designed and it’s performance is experimentally validated. Simulation on an anti-slip control based on the slip acceleration measurement is conducted to demonstrade the feasibility of achieving stability and safety under tire slip.


Keywords: WIP, Sensor Fusion, COG Estimation, Anti-slip Control,Wireless Sensor, Sensor Signal Processing.
Contents
Abstract i
Acknowledgement ii
List of Tables v
List of Figures vii
1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 System Analysis 5
2.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 System Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Balancing Controller Design 10
3.1 Adaptive Controller Design . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Zero Torque Control Simulation Results . . . . . . . . . . . . . . . . . 14
3.3 Wheeled Inverted Pendulum Vehicle Design . . . . . . . . . . . . . . . 16
3.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4 Anti-slip Controller Design and Simulation 19
4.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
iii
4.2 System Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Compensation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Simulation Verification . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4.1 Slip Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 27
5 Anti-slip Control Implementation 32
5.1 On-Wheel Slip Measurement System . . . . . . . . . . . . . . . . . . . 32
5.2 Slip Acceleration Measurement . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Implementation Problems . . . . . . . . . . . . . . . . . . . . . . . . . 36
6 Conclusions and Future Work 38
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Reference
[1] Y. Ha and S. Yuta, “Trajectory tracking control for navigation of self-contained mobile inverse pendulum,” in Intelligent Robots and Systems’ 94.’Advanced
Robotic Systems and the Real World’, IROS’94. Proceedings of the IEEE/RSJ/GI International Conference on, vol. 3, pp. 1875–1882, IEEE, 1994.
[2] F. Grasser, A. D’arrigo, S. Colombi, and A. C. Rufer, “Joe: a mobile, inverted pendulum,” Industrial Electronics, IEEE Transactions on, vol. 49, no. 1, pp. 107–
114, 2002.
[3] A. Salerno and J. Angeles, “The control of semi-autonomous self-balancing twowheeled quasiholonomic mobile robots,” in Proc. of the 15th CISM-IFToMM Symposium on Robot Design, Dynamics and Control (RoManSy), 2004.
[4] K. Pathak, J. Franch, and S. K. Agrawal, “Velocity and position control of a wheeled inverted pendulum by partial feedback linearization,” Robotics, IEEE Transactions on, vol. 21, no. 3, pp. 505–513, 2005.
[5] M. Karkoub and M. Parent, “Modelling and non-linear feedback stabilization of a two-wheel vehicle,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 218, no. 8, pp. 675–686, 2004.
[6] Z. Li and C. Yang, “Neural-adaptive output feedback control of a class of transportation vehicles based on wheeled inverted pendulum models,” Control Systems
Technology, IEEE Transactions on, vol. 20, no. 6, pp. 1583–1591, 2012. 40
[7] C.-C. Tsai, H.-C. Huang, and S.-C. Lin, “Adaptive neural network control of a self-balancing two-wheeled scooter,” Industrial Electronics, IEEE Transactions on, vol. 57, no. 4, pp. 1420–1428, 2010.
[8] J. Huang, F. Ding, T. Fukuda, and T. Matsuno, “Modeling and velocity control for a novel narrow vehicle based on mobile wheeled inverted pendulum,” Control Systems Technology, IEEE Transactions on, vol. 21, no. 5, pp. 1607–1617, 2013.
[9] J. Yi, D. Song, J. Zhang, and Z. Goodwin, “Adaptive trajectory tracking control of skid-steered mobile robots,” in Robotics and Automation, 2007 IEEE International Conference on, pp. 2605–2610, IEEE, 2007.
[10] C. P. Tang, P. T. Miller, V. N. Krovi, J.-C. Ryu, and S. K. Agrawal, “Differentialflatness- based planning and control of a wheeled mobile manipulator—theory and experiment,” Mechatronics, IEEE/ASME Transactions on, vol. 16, no. 4, pp. 768– 773, 2011.
[11] N. Hamzah, Y. M. Sam, H. Selamat, M. K. Aripin, and R. Ghazali, “Second order sliding mode controller for longitudinal wheel slip control,” in Signal Processing and its Applications (CSPA), 2012 IEEE 8th International Colloquium on, pp. 138–143, IEEE, 2012.
[12] D. Hong, P. Yoon, H.-J. Kang, I. Hwang, and K. Huh, “Wheel slip control systems utilizing the estimated tire force,” in American Control Conference, 2006, pp. 6– pp, IEEE, 2006.
[13] C.-F. Huang and T.-J. Yeh, “Control of a pedaled, self-balanced unicycle with adaptation capability,” in Informatics in Control, Automation and Robotics (ICINCO), 2014 11th International Conference on, vol. 2, pp. 120–126, IEEE, 2014.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *