帳號:guest(3.145.69.150)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉姿彣
作者(外文):Liu, Zi Wen
論文名稱(中文):Bi2Te3基熱電模組之界面反應
論文名稱(外文):Interfacial reactions in the Bi2Te3-based thermoelectric modules
指導教授(中文):陳信文
指導教授(外文):Chen, Sinn Wen
口試委員(中文):陳志名
朱旭山
口試委員(外文):Chen, Chih Ming
Chu, Hsu Shen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:103032701
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:122
中文關鍵詞:Bi2Te3熱電模組界面反應
外文關鍵詞:Bi2Te3thermoelectric modulesInterfacial reactions
相關次數:
  • 推薦推薦:0
  • 點閱點閱:285
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
熱電模組能夠將廢熱直接轉換成電能,進而提昇整體能源的使用效率,是目前非常重要的研究課題。Bi2Te3基的P型-(BixSb1-x)2Te3與N型-Bi2(TeySe1-y)3合金,是目前商業上最常使用的熱電材料。熱電模組通常包含了陣列的P-N組對熱電元件,並藉由軟銲將所有的熱電元件連結金屬電極,因此在熱電模組中存在著許多之接點。目前主要使用無鉛銲料,如Sn-3.0wt%Ag-0.5wt%Cu合金。為了避免銲料與熱電材料直接接觸,在熱電材料與銲料間常使用Ni(P)做為阻障層(barrier layer)材料。接點的界面反應,影響接點品質。而接點之品質,直接與熱電模組之可靠度相關。尤其熱電發電機模組應用於較高溫之環境,接點之接合界面反應探討更加重要。
本研究的界面反應探討,包括了二類樣品。第一類是相關子系統的反應偶,第二類是組裝完成的熱電模組。第一類的樣品的探討包括了Ni/Bi、Ni/Se、Ni/Sb、Ni/ Bi2Te3、與Ni/ Bi2Se3。於200oC與150oC反應,Ni/ Bi於界面處生成NiBi3相和NiBi相兩相,特別是僅在反應偶的角落處會發現NiBi相的生成。於200oC反應,Ni/Se界面處生成Ni3Se2和Ni1-xSe相。於200oC反應,Ni/ Sb界面處生成兩層介金屬相,分別為NiSb相與NiSb2相。於150oC與200oC進行固固反應,在Ni/Bi2Te3界面處生成NiTe2相與(Bi2)m(Bi2Te3)n相。Te是此界面反應的主要擴散元素,擴散路徑則為Ni/ NiTe2/(Bi2)m(Bi2Te3)n/ Bi2Te3。於150oC進行固固反應,Ni/ Bi2Se3界面生成一層Ni1-xSe相或Ni-Bi-Se三元相;然而當溫度提升為200oC時,界面處則生成二相混合結構的交錯型反應層。
第二類的樣品包含二種熱電模組,第一組為工研院所製備的Bi2Te3基熱電模組,第二組為俄羅斯某公司所製備的Bi2Te3基模組。工研院的熱電模組使用Sn-3.0wt%Ag-0.5wt%Cu合金為銲料,Au/Ni(P)為濕潤層(wetting layer)與阻障層,P-型合金為(Bi0.2Sb0.8)2(Te0.99Se0.01)3,N-型合金為Bi2(Te0.9Se0.1)3。俄羅斯的熱電模組,使用Sn-0.14wt%Cu-0.26wt%Bi合金為銲料,Ni(P)為阻障層,P-型合金為(Bi0.25Sb0.75)2Te3,N-型合金為Bi2(Te0.9Se0.1)3。反應溫度為150oC與100oC,反應時間長達八個月。對經過反應的模組中的界面生成相進行分析,並與文獻中的相關反應偶生成相進行比對。發現界面之介金屬相厚度與時間平方根均呈現線性正比的關係,顯示介金屬的成長是由擴散來控制。
Thermoelectric modules are important research topic because they can enhance energy usage efficiency by directly converting waste heat into electricity. Bi2Te3-based p-type (Bi,Sb)2Te3 and n-type Bi2(Te,Se)3 alloys are the most commonly used thermoelectric materials in commercialthermoelectric modules. Typically, there are arrays of P-N thermoelectric devices connected to metallic electrodes in thermoelectric modules. Therefore, there are many joints inthermoelectric modules. Nowadays, Sn-based Pb-free solders, such as Sn-3.0wt.%Ag-0.5wt.%Cu, are widely used as solders. In order to prevent direct contact and significant interfacial reactions between solders and thermoelectric substrates, Ni(P) is frequently used as a diffusion barrier layer. Interfacil reactions affect joints’ properties, and the modules’reliablity is directly related with the properties of these joints. Especially, the thermoelectric generators are usually used at relatively high temperatures, understanding of theirinterfacial reactions are even more critical.
There are two kinds of interfacial reaction samples. The samples of the first kind are reaction couples made of the related material sub-systems. Those of the second kind are completed thermoelectric modules. The first kind samples include Ni/Bi, Ni/Se, Ni/Sb, Ni/Bi2Te3 and Ni/Bi2Se3 reaction couples. NiBi3 and NiBi phases are formed in the Ni/Bi couples reacted at 150 oC and 200 oC. NiBi phase is only observed at the corner of the couples. Ni3Se2 and Ni1-xSe phases are formed in the Ni/Se couples reacted at 200oC. In the Ni/Sb couples reacted at 200oC, NiSb and NiSb2 phases are observed. NiTe2 and (Bi2)m(Bi2Te3)n phases are formed in the Ni/Bi2Te3 couples both reacted at 150oC and 200oC. Te is the dominant diffusion species, and the reaction path is Ni/ NiTe2/ (Bi2)m(Bi2Te3)n/Bi2Te3. One reaction phase is formed in the Ni/Bi2Se3 couple reacted at 150oC. This phase could be the Ni1-xSe phase or a Ni-Bi-Se ternary phase. A two-phase mixture reaction zone is observed in the Ni/Bi2Se3 couple reacted at 200oC.
The samples of the second kind have two different groups of termoelectric modules. Thermoelctric modules of the first group are made by ITRI (Industrial Technology Research Instittue), and those of the second group are made by a Russian company. The ITRI-made modules use Sn-3.0wt%Ag-0.5wt%Cu solders and Au/Ni(P) wetting and barrier layers. The P-type thermoelectric substrate is (Bi0.2Sb0.8)2(Te0.99Se0.01)3 and the N-type thermoelectric substrate is Bi2(Te0.9Se0.1)3. The Russian-made modules use Sn-0.14wt%Cu-0.26wt%Bi solder and Ni(P) barrier layer. The P-type thermoelectric substrate is (Bi0.25Sb0.75)2Te3 and the N-type thermoelectric substrate is Bi2(Te0.9Se0.1)3. The reaction temperatures are at 150oC and 100oC. The reactions at each interface in the modules are examined. The results are compared with literature results. The reaction time is as long as 8 months, and the thickness of the reaction layers are proportional to the square root of reaction time which indicate the interfacial reactions are diffusion controlled.
摘要 I
Abstract III
總目錄 V
圖目錄 VIII
表目錄 XVI
一、前言 1
二、文獻回顧 6
2-1界面反應動力學與相平衡的關係 6
2-2熱電基材與焊料之相關界面反應 7
2-2-1 Sn/ Te之界面反應 7
2-2-2 Sn/ Bi2Te3之界面反應 7
2-2-3 Sn/ Sb2Te3之界面反應 8
2-2-4 Sn/ Bi2Se3之界面反應 8
2-2-5 Sn/ (Bi,Sb)2Te3之界面反應 9
2-2-6 Sn/ Bi2(Te,Se)3之界面反應 9
2-2-7 Sn-3.0 wt.% Ag-0.5 wt.% Cu/ (Bi,Sb)2Te3之界面反應 10
2-2-8 Sn-3.0 wt.% Ag-0.5 wt.% Cu/ Bi2(Te,Se)3之界面反應 10
2-3阻障層與焊料之相關界面反應 11
2-3-1 Sn/ Ni之界面反應 11
2-3-2 Sn-Ag/ Ni之界面反應 11
2-3-3 Sn-Cu/ Ni之界面反應 12
2-3-4 Sn-3.0wt%Ag-0.5wt%Cu/ Ni之界面反應 14
2-3-5 Solder/ Ni-P之界面反應 16
2-4阻障層與熱電基材之相關界面反應 18
2-4-1 Ni/ Te之界面反應 18
2-4-2 Ni/ Bi之界面反應 19
2-4-3 Ni/ Sb之界面反應 19
2-4-4 Ni/ Se之界面反應 19
2-4-5 Ni/ Bi2Te3之界面反應 20
2-4-6 Ni/ Sb2Te3之界面反應 20
2-4-7 Ni/ Bi2Se3之界面反應 21
2-4-8 Ni/ (Bi,Sb)2Te3之界面反應 21
2-4-9 Ni/ Bi2(Te,Se)3之界面反應 21
三、實驗方法 47
3-1 Bi2Te3基熱電模組之相關界面 47
3-1-1樣品熱處理與分析前置處理 47
3-1-2樣品分析 47
3-2 Ni/基材之界面反應 48
3-2-1基材配置與基材前置處理 48
3-2-2 反應偶置備與熱處理 48
3-2-3 反應偶分析 49
3-3 Sn-4.0wt.%Ag-0.5 wt.%Cu/ Bi2Se3之界面反應 49
3-3-1基材與銲料配置 49
3-3-2反應偶置備與熱處理 50
3-3-3 反應偶分析 50
四、結果與討論 52
4-1 Ni /基材之界面反應 52
4-1-1 Ni / Bi之界面反應 52
4-1-2 Ni / Se之界面反應 53
4-1-3 Ni / Sb之界面反應 55
4-1-4 Ni / Bi2Se3之界面反應 56
4-1-5 Ni / Bi2Te3之界面反應 57
4-2 銲料與阻障層的界面反應 60
4-2-1 Sn-0.14wt.%Cu-0.26wt.%Bi/ Ni(P) 之界面反應 60
4-2-2 Sn-3.0wt%Ag-0.5wt%Cu(Au)/ Ni(P) 之界面反應 62
4-3 (BixSb1-x)2Te3與阻障層的界面反應 66
4-3-1 (Bi0.25Sb0.75)2Te3/ Ni (P) 之界面反應 66
4-3-2 (Bi0.2Sb0.8)2(Te0.99Se0.01)3 / Ni(P) 之界面反應 67
4-4 Bi2(TeySe1-y)3與阻障層的界面反應 69
4-4-1 Russian-made Bi2(Te0.9Se0.1)3/ Ni(P) 之界面反應 69
4-4-2 ITRI-made Bi2(Te0.9Se0.1)3/ Ni(P) 之界面反應 70
4-5 Sn-4.0wt.%Ag-0.5 wt.%Cu/ Bi2Se3 之界面反應 72
五、結論 112
六、文獻參考 116
[1] 台灣電力公司網頁,火力電廠營運效率, http://www.taipower.com.tw/content/news/news01.aspx, (2015).
[2] 朱旭山,熱電材料與元件之原理與應用,電子與材料雜誌第22期,
工研院工業材料研究所, (2004).
[3] T. M. Tritt, Thermoelectric Materials: Principles, Structure, Properties, and Applications, Encyclopedia of Materials: Science and Technology, pp. 1–11, (2002).
[4] Mohamed S. El-Genk, Hamed H. Saber, Thierry Caillat, Efficient segmented thermoelectric unicouples for space power applications, Energy Conversion and Management , Vol 44, pp. 1755–1772, (2003).
[5] 陳信文、陳立軒、林永森、陳志銘,《電子構裝技術與材料》,高立圖書(2004).
[6] R. E. Reed-Hill and R. Abbaschian, “Physical Metallurgy Principles ”, 3rd edition, PWS, Boston, pp. 365-367, (1994).
[7] 邱政男,國立清華大學 化學工程研究所,博士論文 (2010).
[8] Sinn-wen Chen, Chih-yu Wu, Hsin-jay Wu and Wan-ting Chiu, Journal of Alloys and Compounds, Vol. 611, pp. 313–318, (2014).
[9] Sinn-wen Chen, Hsin-jay Wu, Chih-yu Wu, Chun-fei Chang and Chung-yi Chen, Journal of Alloys and Compounds, Vol. 553, pp. 106–112, (2013).
[10] Shan Ye, Jen-Dong Hwang, Chih- Ming Chen, Metallurgical and Materials Transactions A, Vol. 46A, pp. 2372-2375, (2015).
[11] H. Zhang, H. Y. Jing, Y. D. Han, L. Y. Xu, G-Q. Lu, Journal of Alloys and Compounds, Vol. 576, pp. 424–431, (2013).
[12] Howard D. Blair, Tsung-Yu Pan, John M. Nicholson, Electronic Components and Technology Conference, pp. 259-267, (1998).
[13] M. Mita, M. Kajihara, N. Kurokawa, K. Sakamoto, Materials Science and Engineering A, Vol. 403, pp. 269-275, (2005).
[14] Shinji Ishikawa, Eiji Hashino, Taro Kono and Kohei Tatsumi, Materials Transactions, Vol. 46(11), pp. 2351-2358, (2005).
[15] Sinn-Wen Chen, Chih-Ming Chen, and Wen-Chyuarn Liu, Journal of Electronic Materials, Vol. 27(11), pp. 1193-1199, (1998).
[16] C.-M. Chen, S.-W. Chen, Acta Materialia, Vol. 50, pp. 2461–2469, (2002).
[17] Hsiu-feng Hsu, Sinn-wen Chen, Acta Materialia, Vol. 52, pp. 2541–2547, (2004).
[18] 王朝弘,國立清華大學 化學工程研究所,博士論文 (2008).
[19] Chao-hong Wang, Sinn-wen Chen, Acta Materialia, Vol. 54, pp. 247–253, (2006).
[20] Chih-Hao Lin, Sinn-Wen Chen, and Chao-Hong Wang, Journal of Electronic Materials, Vol. 31(9), pp. 907-915, (2002).
[21] W. T. Chen, C. E. Ho, and C. R. Kao, J. Mater. Res., Vol. 17(2), pp. 263-266, (2002).
[22] S. C. Yang, C. C. Chang, M. H. Tsai, C. R. Kao, Journal of Alloys and Compounds, Vol. 499, pp. 149–153, (2010).
[23] C.E. Ho, Y.W. Lin, S.C. Yang, C.R. Kao, and D.S. Jiang, Journal of Electronic Materials, Vol. 35(5), pp. 1017-1025, (2006).
[24] S. J. Wang, H.J. Kao, and C.Y. Liu, Journal of Electronic Materials, Vol. 33(10), pp. 1130-1135, (2004).
[25] W.-M. Chen, P. Mccloskey, P. Byrne, P. Cheasty, G. Duffy, J.F. Rohan, J. Boardman, A. Mulcahy, And S.C. O’Mathuna, Journal of Electronic Materials, Vol. 33(8), pp. 900-906, (2004).
[26] Aditya Kumar and Zhong Chen, Journal of Electronic Materials, Vol. 40(2), pp. 213-223, (2011).
[27] Jeong-Won Yoon, Seung-Boo Jung, Journal of Alloys and Compounds, Vol. 376, pp. 105-110, (2004).
[28] Zhong Chen, Min He, and Guojun Qi, Journal of Electronic Materials, Vol. 33(12), pp. 1465-1472, (2004).
[29] T.S. Huang, H.W. Tseng, C.T. Lu,Y.H. Hsiao, Y.C. Chuang, And C.Y. Liu, Journal of Electronic Materials, Vol. 39(11), pp. 2382-2386, (2010).
[30] Y. J. Hu, Y. C. Hsu, C. T. Lu, T. S. Huang, C. Y. Chen, W. N. Chuang, C. Y. Hsiao, C. P. Lin, and C. Y. Liu, Journal of Electronic Materials, Vol. 43(1), pp. 277-283, (2014).
[31] Yong-Jun Oh and Sung-Yong Oh, Journal of Electronic Materials, Vol. 38(12), pp. 2554-2562, (2009).
[32] K. S. Lin, H.Y. Huang, and C.P. Chou, Journal of Materials Engineering and Performance, Vol. 18(2), pp.182-189, (2009).
[33] John H. L. Pang, Luhua Xu, X.Q. Shi, W. Zhou, and S.L. Ngoh, Journal of Electronic Materials, Vol. 33(10), pp. 1219-1226, (2004).
[34] T. Y. Lee, W.J. Choi, K.N. Tu, J.W. Jang, S.M. Kuo, J.K. Lin, D.R. Frear, K. Zeng and J.K. Kivilahti, J. Mater. Res., Vol. 17(2), pp. 291-301, (2002).
[35] M. O. Alam, Y.C. Chan, K.C. Hung, Microelectronics Reliability, Vol. 42, pp. 1065-1073, (2002).
[36] Chi-Won Hwang, Katsuaki Suganuma, Masayuki Kiso, and shigeo Hashimoto, Journal of Electronic Materials, Vol. 33(10), pp. 1200-1209, (2004).
[37] Yung-Chi Lin, Toung-Yi Shih, Shih-Kang Tien and Jenq-Gong Duh, Scripta Materialia, Vol. 56, pp. 49-52, (2007).
[38] M. L. Huang, T. Loeher, D. Manessis, L. Boettcher,A. Ostmann, and H. Reichl, Journal of Electronic Materials, Vol. 35(1), pp. 181-188, (2006).
[39] Yoon-Chul Sohn, Jin Yu, Sung K. Kang, Da-Yuan Shih and Taek-Yeong Lee, 2005 Electronic Components and Technology Conference, pp. 83-88, (2005).
[40] Yung-Chi Lin, Jenq-Gong Duh, Scripta Materialia, Vol. 54, pp.1661-1665, (2006).
[41] Yung-Chi Lin, Kai-Jheng Wang, And Jenq-Gong Duh, Journal of Electronic Materials, Vol. 39(3), pp. 283-294, (2010).
[42] Peng Suna, Cristina Andersson, Xicheng Wei, Zhaonian Cheng,Dongkai Shangguan, Johan Liu, Journal of Alloys and Compounds, Vol. 425, pp. 191-199, (2006).
[43] Young-Doo Jeon, Sabine Nieland, Andreas Ostmann, Herbert Reich, and Kyung-Wook Paik, Journal of Electronic Materials, Vol. 32(6), pp. 548-557, (2003).
[44] M. O. Alam, Y. C. Chan, K. N. Tu, Chem. Mater., Vol. 15, pp. 4340-4342, (2003).
[45] Dae-Gon Kim, Jong-Woong Kim, Seung-Boo Jung, Materials Science and Engineering B, Vol. 121, pp. 204-210, (2005).
[46] C. E. Ho, S. C. Yang, C. R. Kao, J Mater Sci: Mater Electron, Vol. 18, pp. 155–174, (2007).
[47] K. Zeng, K. N. Tu, Materials Science and Engineering R, Vol. 38, pp. 55-105, (2002).
[48] Guang Zeng, Songbai Xue, Liang Zhang, Lili Gao, Wei Dai, Jiadong Luo, J Mater Sci: Mater Electron,Vol. 21, pp. 421-440, (2010).
[49] S.J. Wang and C.Y. Liu, Journal of Electronic Materials, Vol. 32(11), pp. 1303-1308, (2003).
[50] Young-Doo Jeon, Kyung-Wook Paik, Kyung-Soon Bok, Woo-Suk Choi, and Chul-Lae Cho, Journal of Electronic Materials, Vol. 31(5), pp. 520-527, (2002).
[51] Sinn-Wen Chen, Shyr-Harn Wu, and Shou-Wei Lee, Journal of Electronic Materials, Vol. 32(11), pp. 1188-1194, (2003).
[52] P.L. Tu, Y.C. Chan, K.C. Hung and J. K. L. La, Scripta mater., Vol. 44, pp. 317-323, (2001).
[53] 楊庭瑞,國立清華大學 化學工程研究所,碩士論文 (2015).
[54] M.S. Lee, C.M. Liu, and C.R. Kao, Journal of Electronic Materials, Vol. 28(1), pp. 57-62, (1999).
[55] H. Okamoto, Journal of Phase Equilibria and Diffusion, Vol. 33(6), pp. 492, (2012).
[56] 陳韋安,國立清華大學 化學工程研究所,碩士論文 (2013).
[57] B. Predel, Ni-Se (Nickel-Selenium), Subvolume I ‘Ni-Np – Pt-Zr’ of Volume 5 ‘Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys’ of Landolt-Börnstein-Group IV Physical Chemistry, Springer Berlin Heidelberg, pp. 1-3, (1998).
[58] Ka Xiong, Weichao Wang, Husam N Alshareef, Rahul P Gupta, John B White, Bruce E Gnade and Kyeongjae Cho, Journal Of Physics D: Applied Physics, Vol. 43, (2010).
[59] Wen P. Lin, Daniel E. Wesolowski, Chin C. Lee, J Mater Sci: Mater Electron, Vol. 22, pp. 1313-1320, (2011).
[60] T Kacsich, E Kolawa, J P Fleurial, T Caillat and M-A Nicolet, J. Phys. D: Appl. Phys., Vol. 31, pp. 2406-2411, (1998).
[61] S. Y. Lee and P. Nash, ASM, Materials Park, Ohio, pp. 330-338, (1991).
[62] H. Okamoto and L. E. Tanner, Binary Alloy Phase Diagram, 2ed edition, Vol.1, in: T. B. Massalski et al. ASM International, Materials Park, OH, pp. 800-801, (1990).
[63] Anke E. Abken, Solar Energy Materials & Solar Cells, Vol. 73, pp. 391-409, (2002).
[64] P. Y. Chien, C. H. Yeh, H. H. Hsu, and Albert T. Wu, Journal of Electronic Materials, Vol. 43(1), pp. 284-289, (2014).
[65] 吳芷聿,國立清華大學 化學工程研究所,碩士論文 (2013).
[66] Li-Chen Lo and Albert T. Wu, Journal of Electronic Materials, Vol. 41(12), pp. 3325-3330, (2012).
[67] O. D. Iyore, T. H. Lee, R. P. Gupta, J. B. White, H. N. Alshareef, M. J. Kim and B.E. Gnade, Surf. Interface Anal., Vol. 41, pp. 440-444, (2009).
[68] A. D. Mah, L. B. Pankratz, in Contributions to the Data on Theoretical Metallurgy: XVI, Thermodynamic Properties of Nickel and its Inorganic Compounds, Vol. 668, (1976).
[69] Okamoto H., Journal Phase Equilibrium, Vol. 21, pp. 210, (2000).
[70] J. W. Jang, D. R. Frear, T. Y. Lee and K. N. Tu, J. Appl. Phys., Vol. 88 , pp. 6359-2363, (2000).
[71] Mike Powers, Jianbiao Pan, Julie Silk, and Patrick Hyland, Journal Of Electronic Materials, Vol. 41(2), pp. 224-231, (2012).
[72] C. E. Ho, Y. M. Chen, and C. R. Kao, Journal of Electronic Materials, Vol. 28(11), pp. 1231-1237, (1999).
[73] N. Saunders and A. P. Miodownik, Bulletin of Alloy Phase Diagrams, Vol. 11(3), pp. 278-287, (1990).
[74] R. C. Sharma, and Y. A. Chang, Binary Alloy Phase Diagrams, II Ed., Vol. 3, pp. 3342-3343, (1990).
[75] S. N. Chizhevskaya, L. E. Shelimova, and I. A. Zaitseva, Inorganic Materials, Vol. 30, pp. 1285-1292, (1994).
[76] S.-W. Chen, T.-R. Yang, C.-Y. Wu, H.-W. Hsiao, H.-S. Chu, J.-D. Huang and T.-W. Liou, Journal of Alloys and Compounds, Vol. 686, pp. 847-853, (2016).
[77] Sinn-wen Chen, Ting-ruei Yang, Haw-wen Hsiao, Po-han Lin, Jia-hong Huang, Jenn-dong Huang, Materials Chemistry and Physics, Vol. 180, pp. 396-403, (2016).
[78] Yubi Zhang, Changrong Li, Zhenmin Du, Cuiping Guo, Computer Coupling of Phase Diagrams and Thermochemistry, Vol. 32, pp. 378-388, (2008).
[79] F. J. J. Van Loo, Progress in the Solid State Chemistry, Vol. 20, pp. 47-99, (1990).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *