帳號:guest(3.145.69.33)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):盧羿甫
作者(外文):Yi-Fu Lu
論文名稱(中文):探討奈米粒子之表面氧化還原能力作為觸媒催化氧化放熱反應
論文名稱(外文):Surface Oxidation Reduction of Nanoparticles for the Catalysis in the Exothermic Oxidative Reaction
指導教授(中文):蔡德豪
指導教授(外文):De-Hao Tsai
口試委員(中文):何榮銘
呂世源
汪上曉
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:103032563
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:73
中文關鍵詞:奈米觸媒氧化銅活性分析程溫還原反應
外文關鍵詞:nanocatalystcopper oxideactivity testTPR
相關次數:
  • 推薦推薦:0
  • 點閱點閱:41
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
本研究工作目的是建立連續式觸媒催化氣相反應系統,針對以不同製備方式的金屬與其氧化物之奈米觸媒進行氧化反應的催化能力測試與改良。初步階段研究中我們選用氧化銅作為觸媒,並以一氧化碳氧化反應作為模型系統來進行觸媒的催化活性測試。並進行氫氣的程溫還原反應(H2-TPR)來了解觸媒的氧化還原能力與表面特性來進行活性評估。並使用掃描式電子顯微鏡(SEM)分析奈米觸媒之粒徑與型態。實驗結果顯示以氣霧化製備方式的氧化銅奈米觸媒其起燃溫度明顯低於市售的氧化銅與以含浸法製程的氧化銅,並具有較高之催化活性。藉由SEM分析,相較於市售氧化銅和含浸法製程的氧化銅,氣霧化製程的氧化銅具有較小的粒徑以及分散性,可以有效提升觸媒的催化活性。以氫氣TPR測試氧化銅觸媒還原能力,也發現氣霧化製程氧化銅其還原能力是優於市售氧化銅與含浸法製程的氧化銅,可以得知氧化銅表面的還原能力與催化活性具有正比的關係。研究中我們探討以含浸法製程將二氧化鈰作為載體的方式製備複合式氧化銅奈米觸媒,觀察到氧化銅在載體上的分散性會影響其氧化還原能力和活性,並與先前單成分氧化銅材料比較其氧化還原能力,結果顯示得知有添加載體的複合材料可以有效提高氧化銅觸媒之氧化還原能力,並增加催化活性。
在研究第二階段中,我們針對甲烷的燃燒反應進行探討,我們利用氣霧化方式來製備不同氧化態的單成分CuxO-NP與複合式CuCeOx-NP之奈米觸媒,探討單成分氧化銅奈米粒子與氧化銅/氧化鈰複合式奈米粒子對甲烷燃燒反應的催化活性影響。材料分析方面我們使用SEM、XRD及DMA來分析奈米粒子的型態與晶格以及粒徑分佈,並利用甲烷活性測試、觸媒催化活性之穩定性測試、甲烷的程溫還原反應來進行奈米觸媒催化與還原能力的分析。實驗結果顯示氧化銅比氧化亞銅和銅具有更好的反應活性與還原能力。相較於單成分的氧化銅,添加氧化鈰後所合成之複合式奈米粒子能具有更低的起燃溫度(340 °C)以及高轉化率,可以得知添加鈰之後的CuCeOx-NP-0.83可以利用銅與鈰之間的界面金屬-擔體作用力效應來提升甲烷燃燒反應的催化活性。研究中我們設計富氧、足氧以及貧氧的條件下進行催化活性之穩定性測試,以進一步了解甲烷燃燒反應的活性與穩定性之機制。結果顯示在貧氧條件時,除了積碳所造成的影響之外,氧化銅在反應時會被還原成銅而導致觸媒的活性迅速下降。而CuCeOx-NP在穩定性測試時,其在富氧、足氧及貧氧的條件下皆能維持其轉化率,顯示添加二氧化鈰有助於催化碳的氧化反應發生,以大幅降低積碳所造成的影響。且在貧氧條件下,二氧化鈰能使氧化銅能維持氧化態以避免不可逆還原而影響催化活性。由此可以得知添加二氧化鈰的CuCeOx-NP不僅具有良好的催化活性,也能使觸媒催化的穩定性得到大幅提升,這將對天然氣作為替代能源的發展領域上有所助益,可以提升其燃燒效率,並降低對環境的汙染。
We established a continuous catalytic reaction activity test system for the metal/metal oxide nanocatalysts. Firstly, the CO oxidation catalyzed by the CuO nanoparticles is chosen as the model reaction. The gas chromatography was used as the downstream detector to analyze the compositions of gases before and after the reaction. In addition, we developed a customized hydrogen temperature-programmed reduction system (TPR) for evaluating the oxidation-reduction ability of the CuO nanocatalysts. Orthogonally, scanning electron microscopy (SEM) was employed to provide the particle imagery and the particle size of the CuO nanoparticles. Experimental results showed that the initial reduction temperature of the gas-phase controlled synthesis of copper oxides-based was lower than the commercial CuO and the impregnation CuO. The decrease in the required initial reduction temperature of CuO resulted in the decrease in the required light-off temperature and also the increase in the catalytic ability to the CO oxidation. The results confirmed that the predicted performance by the TPR analysis was consistent with the measured catalytic activity. In comparison to the CuO-only single-component nanocatalysts, we also investigated the performance of hybrid nanocatalysts, using CeO2 as the support of CuO. Results showed that the additions of CeO2 effectively enhanced the oxidation-reduction ability and activity for the existing CuO-based nanocatalysts for CO oxidation.
In the second section, we reported a systematic study of gas-phase controlled synthesis of copper oxides-based hybrid nanoparticles for catalytic methane combustion. SEM, DMA, and XRD were employed to provide the particle imagery and the crystallinity of nanoparticles respectively. A CH4-based temperature-programmed reduction system was developed to correlate the reducibility of nanoparticle with the catalytic performance of CH4 oxidation over various oxidation state of copper-based nanoparticle. The results showed that the CuO-NP exhibit the highest activity and the reducibility among the three single component Cu-based nanoparticle (CuO, Cu2O, Cu). In comparison to the CuO single-component nanocatalysts, CuCeOx-NP-0.83 was found to have a much lower light-off temperature (340 °C) and a higher conversion ratio, indicating that the effect of Cu-Ce interfacial metal-support interaction enhanced the catalyst activity of methane combustion. In order to analyze the activity and stability mechanism of methane combustion, the catalyst stability test was performed under oxygen-rich and oxygen-lean conditions. Under the oxygen-lean condition, the decreasing catalytic activity of CuO-NP was affected by the coking and reduction of CuO. CuCeOx-NP remained its catalytic activity under both the oxygen-lean and oxygen-rich conditions. The results showed that adding CeO2 improved the carbon oxidative reaction which substantially avoided the poisoning by coking. Furthermore, CuCeOx-NP maintained its oxidation state to prevent the irreversible reduction under the oxygen-lean condition. Our results showed that CuCeOx-NP had not only a catalytic activity, but also a high stability, which can be used to enhance efficiency of methane combustion and reduce environmental pollution for alternative energy applications.
目錄
摘要 I
Abstract III
目錄 VI
圖目錄 VIII
第一章 緒論 1
1.1 金屬/金屬氧化物的觸媒特性 1
1.2 金屬/金屬氧化物奈米粒子作為觸媒催化的應用 3
1.3 觸媒表面性質與還原態對一氧化碳氧化反應之活性影響 10
1.4 單成分/複合式奈米觸媒對甲烷燃燒反應機制之影響 15
1.5 實驗目的與方法 17
第二章 實驗方法 19
2.1 實驗藥品 19
2.2 氣霧化奈米粒子之合成 21
2.3 含浸法製程之奈米粒子合成 22
2.4 靜電收集器(Electrostatic Precipitator) 23
2.5 掃描式電子顯微鏡(Scanning Electron Microscopy) 24
2.6 X光繞射儀(XRD) 24
2.7 氣相奈米粒子流動分析儀(DMA) 25
2.8 觸媒活性測試 26
2.9 TPR程溫還原反應 28
第三章 結果與討論 30
3.1 CO氧化反應 30
3.1.1 材料基本性質分析 30
3.1.2 氫氣TPR的還原能力影響 34
3.1.3 觸媒活性測試之起燃點與轉化率分析 39
3.2 甲烷燃燒催化反應 43
3.2.1 不同氧化態之單成分銅粒子對催化活性之影響 43
3.2.2 CuCeOx-NP 對催化活性之影響 48
3.2.3 奈米粒子穩定性與催化機制之探討 53
第四章 結論 60
第五章 未來展望 62
參考文獻 64

參考文獻
[1] X.Y. Jiang, G.L. Lu, R.X. Zhou, J.X. Mao, Y. Chen, X.M. Zheng, Studies of pore structure, temperature-programmed reduction performance, and micro-structure of CuO/CeO2 catalysts, Appl Surf Sci, 173 (2001) 208-220.
[2] R.A. Dixon, R.G. Egdell, Direct observation of sintering in a model oxide supported metal catalyst - STM of Pd on WO3(001), J Chem Soc Faraday T, 94 (1998) 1329-1331.
[3] Y. Nagai, T. Hirabayashi, K. Dohmae, N. Takagi, T. Minami, H. Shinjoh, S. Matsumoto, Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide-support interaction, J Catal, 242 (2006) 103-109.
[4] T. Doane, C. Burda, Nanoparticle mediated non-covalent drug delivery, Adv Drug Deliver Rev, 65 (2013) 607-621.
[5] A.T. Bell, The impact of nanoscience on heterogeneous catalysis, Science, 299 (2003) 1688-1691.
[6] V. Polshettiwar, R.S. Varma, Green chemistry by nano-catalysis, Green Chem, 12 (2010) 743-754.
[7] M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Novel Gold Catalysts for the Oxidation of Carbon-Monoxide at a Temperature Far Below 0-Degrees-C, Chem Lett, (1987) 405-408.
[8] M. Haruta, Size- and support-dependency in the catalysis of gold, Catal Today, 36 (1997) 153-166.
[9] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238 (1972) 37-+.
[10] G.R. Bamwenda, S. Tsubota, T. Nakamura, M. Haruta, Photoassisted Hydrogen-Production from a Water-Ethanol Solution - a Comparison of Activities of Au-Tio2 and Pt-Tio2, J Photoch Photobio A, 89 (1995) 177-189.
[11] G.R. Bamwenda, S. Tsubota, T. Kobayashi, M. Haruta, Photoinduced Hydrogen-Production from an Aqueous-Solution of Ethylene-Glycol over Ultrafine Gold Supported on Tio2, J Photoch Photobio A, 77 (1994) 59-67.
[12] M. Bowker, P.R. Davies, L.S. Al-Mazroai, Photocatalytic Reforming of Glycerol over Gold and Palladium as an Alternative Fuel Source, Catal Lett, 128 (2009) 253-255.
[13] M.S. Park, M. Kang, The preparation of the anatase and rutile forms of Ag-TiO2 and hydrogen production from methanol/water decomposition, Mater Lett, 62 (2008) 183-187.
[14] H.J. Choi, M. Kang, Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase structure of Cu loaded TiO2, Int J Hydrogen Energ, 32 (2007) 3841-3848.
[15] M. Jung, J. Scott, Y.H. Ng, Y.J. Jiang, R. Amal, CuOx dispersion and reducibility on TiO2 and its impact on photocatalytic hydrogen evolution, Int J Hydrogen Energ, 39 (2014) 12499-12506.
[16] G.H. Li, N.M. Dimitrijevic, L. Chen, T. Rajh, K.A. Gray, Role of Surface/Interfacial Cu(2+) Sites in the Photocatalytic Activity of Coupled CuO-TiO(2) Nanocomposites, J Phys Chem C, 112 (2008) 19040-19044.
[17] R.J. Farrauto, M.C. Hobson, T. Kennelly, E.M. Waterman, Catalytic Chemistry of Supported Palladium for Combustion of Methane, Appl Catal a-Gen, 81 (1992) 227-237.
[18] K. Eguchi, H. Arai, Low temperature oxidation of methane over Pd-based catalysts - effect of support oxide on the combustion activity, Appl Catal a-Gen, 222 (2001) 359-367.
[19] L.H. Xiao, K.P. Sun, X.L. Xu, X.N. Li, Low-temperature catalytic combustion of methane over Pd/CeO2 prepared by deposition-precipitation method, Catal Commun, 6 (2005) 796-801.
[20] T.J. Huang, D.H. Tsai, CO oxidation behavior of copper and copper oxides, Catal Lett, 87 (2003) 173-178.
[21] F. Severino, J. Laine, Effect of Composition and Pretreatments on the Activity of Copper Chromium Based Catalysts for the Oxidation of Carbon-Monoxide, Ind Eng Chem Prod Rd, 22 (1983) 396-401.
[22] M.L. Jacono, A. Cimino, M. Inversi, Oxidation-States of Copper on Alumina Studied by Redox Cycles, J Catal, 76 (1982) 320-332.
[23] A. Yanase, H. Komiyama, Insitu Observation of Oxidation and Reduction of Small Supported Copper Particles Using Optical-Absorption and X-Ray-Diffraction, Surf Sci, 248 (1991) 11-19.
[24] A. Dandekar, M.A. Vannice, Determination of the dispersion and surface oxidation states of supported Cu catalysts, J Catal, 178 (1998) 621-639.
[25] K. Nagase, Y. Zheng, Y. Kodama, J. Kakuta, Dynamic study of the oxidation state of copper in the course of carbon monoxide oxidation over powdered CuO and Cu2O, J Catal, 187 (1999) 123-130.
[26] D. Ciuparu, E. Altman, L. Pfefferle, Contributions of lattice oxygen in methane combustion over PdO-based catalysts, J Catal, 203 (2001) 64-74.
[27] K. Persson, A. Ersson, K. Jansson, J.L.G. Fierro, S.G. Jaras, Influence of molar ratio on Pd-Pt catalysts for methane combustion, J Catal, 243 (2006) 14-24.
[28] B. Van Devener, S.L. Anderson, T. Shimizu, H. Wang, J. Nabity, J. Engel, J. Yu, D. Wickham, S. Williams, In Situ Generation of Pd/PdO Nanoparticle Methane Combustion Catalyst: Correlation of Particle Surface Chemistry with Ignition, J Phys Chem C, 113 (2009) 20632-20639.
[29] A. Hellman, A. Resta, N.M. Martin, J. Gustafson, A. Trinchero, P.A. Carlsson, O. Balmes, R. Felici, R. van Rijn, J.W.M. Frenken, J.N. Andersen, E. Lundgren, H. Gronbeck, The Active Phase of Palladium during Methane Oxidation, Journal of Physical Chemistry Letters, 3 (2012) 678-682.
[30] T.V. Choudhary, S. Banerjee, V.R. Choudhary, Influence of PdO content and pathway of its formation on methane combustion activity, Catal Commun, 6 (2005) 97-100.
[31] T.V. Choudhary, S. Banerjee, V.R. Choudhary, Catalysts for combustion of methane and lower alkanes, Appl Catal a-Gen, 234 (2002) 1-23.
[32] F. Arosio, S. Colussi, G. Groppi, A. Trovarelli, Regeneration of S-poisoned Pd/Al2O3 catalysts for the combustion of methane, Catal Today, 117 (2006) 569-576.
[33] G. Zhu, J. Han, D.Y. Zemlyanov, F.H. Ribeiro, Temperature Dependence of the Kinetics for the Complete Oxidation of Methane on Palladium and Palladium Oxide, The Journal of Physical Chemistry B, 109 (2005) 2331-2337.
[34] J. Cortes, E. Valencia, P. Araya, Two-Site Mechanism for the Oxidation Reaction of Methane on Oxidized Palladium, J Phys Chem C, 114 (2010) 11441-11447.
[35] G. Aguila, F. Gracia, J. Cortes, P. Araya, Effect of copper species and the presence of reaction products on the activity of methane oxidation on supported CuO catalysts, Applied Catalysis B-Environmental, 77 (2008) 325-338.
[36] L.H. Hu, Q. Peng, Y.D. Li, Selective Synthesis of Co3O4 Nanocrystal with Different Shape and Crystal Plane Effect on Catalytic Property for Methane Combustion, J Am Chem Soc, 130 (2008) 16136-+.
[37] Y.F. Han, L. Chen, K. Ramesh, E. Widjaja, S. Chilukoti, I.K. Surjami, J. Chen, Kinetic and spectroscopic study of methane combustion over alpha-Mn2O3 nanocrystal catalysts, J Catal, 253 (2008) 261-268.
[38] W. Liu, M. Flytzani-Stephanopoulos, Total Oxidation of Carbon-Monoxide and Methane over Transition Metal-Fluorite Oxide Composite Catalysts .1. Catalyst Composition and Activity, J Catal, 153 (1995) 304-316.
[39] J. Yuan, H.X. Dai, L. Zhang, J.G. Deng, Y.X. Liu, H. Zhang, H.Y. Jiang, H. He, PMMA-templating preparation and catalytic properties of high-surface-area three-dimensional macroporous La2CuO4 for methane combustion, Catal Today, 175 (2011) 209-215.
[40] P. Cho, T. Mattisson, A. Lyngfelt, Carbon formation on nickel and iron oxide-containing oxygen carriers for chemical-looping combustion, Ind Eng Chem Res, 44 (2005) 668-676.
[41] H. Ozdemir, M.A.F. Oksuzomer, M.A. Gurkaynak, Preparation and characterization of Ni based catalysts for the catalytic partial oxidation of methane: Effect of support basicity on H-2/CO ratio and carbon deposition, Int J Hydrogen Energ, 35 (2010) 12147-12160.
[42] P. Forzatti, L. Lietti, Catalyst deactivation, Catal Today, 52 (1999) 165-181.
[43] L.F. Liotta, M. Ousmane, G. Di Carlo, G. Pantaleo, G. Deganello, G. Marci, L. Retailleau, A. Giroir-Fendler, Total oxidation of propene at low temperature over Co3O4-CeO2 mixed oxides: Role of surface oxygen vacancies and bulk oxygen mobility in the catalytic activity, Appl Catal a-Gen, 347 (2008) 81-88.
[44] A.D. Mayernick, M.J. Janik, Methane activation and oxygen vacancy formation over CeO2 and Zr, Pd substituted CeO2 surfaces, J Phys Chem C, 112 (2008) 14955-14964.
[45] M. Cargnello, J.J.D. Jaen, J.C.H. Garrido, K. Bakhmutsky, T. Montini, J.J.C. Gamez, R.J. Gorte, P. Fornasiero, Exceptional Activity for Methane Combustion over Modular Pd@CeO2 Subunits on Functionalized Al2O3, Science, 337 (2012) 713-717.
[46] V.A. Sadykov, T.G. Kuznetsova, Y.V. Frolova-Borchert, G.M. Alikina, A.I. Lukashevich, V.A. Rogov, V.S. Muzykantov, L.G. Pinaeva, E.M. Sadovskaya, Y.A. Ivanova, E.A. Paukshtis, N.V. Mezentseva, L.C. Batuev, V.N. Parmon, S. Neophytides, E. Kemnitz, K. Scheurell, C. Mirodatos, A.C. van Veen, Fuel-rich methane combustion: Role of the Pt dispersion and oxygen mobility in a fluorite-like complex oxide support, Catal Today, 117 (2006) 475-483.
[47] L.F. Liotta, G. Di Carlo, G. Pantaleo, G. Deganello, Co3O4/CeO2 andCo(3)O(4)/CeO2-ZrO2 composite catalysts for methane combustion: Correlation between morphology reduction properties and catalytic activity, Catal Commun, 6 (2005) 329-336.
[48] W.L. Yang, D. Li, D.M. Xu, X.Y. Wang, Effect of CeO2 preparation method and Cu loading on CuO/CeO2 catalysts for methane combustion, J Nat Gas Chem, 18 (2009) 458-466.
[49] M.S.P. Francisco, V.R. Mastelaro, P.A.P. Nascente, A.O. Florentino, Activity and Characterization by XPS, HR-TEM, Raman Spectroscopy, and BET Surface Area of CuO/CeO2-TiO2 Catalysts, The Journal of Physical Chemistry B, 105 (2001) 10515-10522.
[50] J. Dixkens, H. Fissan, Development of an electrostatic precipitator for off-line particle analysis, Aerosol Sci Tech, 30 (1999) 438-453.
[51] X.L. Tang, B.C. Zhang, Y. Li, Y.D. Xu, Q. Xin, W.J. Shen, CuO/CeO2 catalysts: Redox features and catalytic behaviors, Appl Catal a-Gen, 288 (2005) 116-125.
[52] X.C. Zheng, X.L. Zhang, X.Y. Wang, S.R. Wang, S.H. Wu, Preparation and characterization of CuO/CeO2 catalysts and their applications in low-temperature CO oxidation, Appl Catal a-Gen, 295 (2005) 142-149.
[53] X.C. Zheng, S.H. Wu, S.P. Wang, S.R. Wang, S.M. Zhang, W.P. Huang, The preparation and catalytic behavior of copper-cerium oxide catalysts for low-temperature carbon monoxide oxidation, Appl Catal a-Gen, 283 (2005) 217-223.
[54] Y.G. Jin, C.H. Sun, S. Su, Experimental and theoretical study of the oxidation of ventilation air methane over Fe2O3 and CuO, Physical Chemistry Chemical Physics, 17 (2015) 16277-16284.
[55] A. Hornes, D. Gamarra, G. Munuera, J.C. Conesa, A. Martinez-Arias, Catalytic properties of monometallic copper and bimetallic copper-nickel systems combined with ceria and Ce-X (X = Gd, Tb) mixed oxides applicable as SOFC anodes for direct oxidation of methane, J Power Sources, 169 (2007) 9-16.
[56] L. Kundakovic, M. Flytzani-Stephanopoulos, Reduction characteristics of copper oxide in cerium and zirconium oxide systems, Appl Catal a-Gen, 171 (1998) 13-29.
[57] J.Y. Luo, M. Meng, Y.Q. Zha, L.H. Guo, Identification of the active sites for CO and C3H8 total oxidation over nanostructured CuO-CeO2 and Co3O4-CeO2 catalysts, J Phys Chem C, 112 (2008) 8694-8701.
[58] J.R. Paredes, E. Díaz, F.V. Díez, S. Ordóñez, Combustion of Methane in Lean Mixtures over Bulk Transition-Metal Oxides: Evaluation of the Activity and Self-Deactivation, Energ Fuel, 23 (2009) 86-93.
[59] A. Patel, P. Shukla, J.L. Chen, T.E. Rufford, S.B. Wang, V. Rudolph, Z.H. Zhu, Structural sensitivity of mesoporous alumina for copper catalyst loading used for NO reduction in presence of CO, Chem Eng Res Des, 101 (2015) 27-43.
[60] J.B. Wang, D.H. Tsai, T.J. Huang, Synergistic catalysis of carbon monoxide oxidation over copper oxide supported on samaria-doped ceria, J Catal, 208 (2002) 370-380.
[61] P.M. Heynderickx, J.W. Thybaut, H. Poelman, D. Poelman, G.B. Marin, The total oxidation of propane over supported Cu and Ce oxides: A comparison of single and binary metal oxides, J Catal, 272 (2010) 109-120.
[62] A. Hedayati, A.M. Azad, M. Ryden, H. Leion, T. Mattisson, Evaluation of Novel Ceria-Supported Metal Oxides As Oxygen Carriers for Chemical-Looping Combustion, Ind Eng Chem Res, 51 (2012) 12796-12806.
[63] F. He, Y.G. Wei, H.B. Li, H. Wang, Synthesis Gas Generation by Chemical-Looping Reforming Using Ce-Based Oxygen Carriers Modified with Fe, Cu, and Mn Oxides, Energ Fuel, 23 (2009) 2095-2102.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *